ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependent Luttinger surfaces

68   0   0.0 ( 0 )
 نشر من قبل Ashish Chainani
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Luttinger surface of an organic metal (TTF-TCNQ), possessing charge order and spin-charge separation, is investigated using temperature dependent angle-resolved photoemission spectroscopy. The Luttinger surface topology, obtained from momentum distribution curves, changes from quasi-2D(dimensional) to quasi-1D with temperature. The high temperature quasi-2D surface exhibits 4$k_F$ charge-density-wave (CDW) superstructure in the TCNQ derived holon band, in the absence of 2$k_F$ order. Decreasing temperature results in quasi-1D nested 2$k_F$ CDW order in the TCNQ spinon band and in the TTF surface. The results establish the link in momentum-space between charge order and spin-charge separation in a Luttinger liquid.



قيم البحث

اقرأ أيضاً

The surfaces generated by cleaving non-polar, two-dimensional oxides are often considered to be perfect or ideal. However, single particle spectroscopies on Sr2RuO4, an archetypal non-polar two dimensional oxide, show significant cleavage temperature dependence. We demonstrate that this is not a consequence of the intrinsic characteristics of the surface: lattice parameters and symmetries, step heights, atom positions, or density of states. Instead, we find a marked increase in the density of defects at the mesoscopic scale with increased cleave temperature. The potential generality of these defects to oxide surfaces may have broad consequences to interfacial control and the interpretation of surface sensitive measurements.
112 - J. Kunes , V. I. Anisimov 2008
Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model o f covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.
We have observed temperature-dependent reversal of the rectifying polarity in Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics we have found that the permittivity of SrTiO3 near the interface exhibits temperature depende nce opposite to that observed in the bulk, significantly reducing the barrier width. At low temperature, tunneling current dominates the junction transport due both to such barrier narrowing and to suppressed thermal excitations. The present results demonstrate that novel junction properties can be induced by the interface permittivity.
We report neutron diffraction and magnetization studies of the magnetic order in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are three magnetic cycloidal domains with propagation vectors equivalent by crystallographic symm etry. The cycloid period slowly grows with increasing temperature. The magnetic domain populations do not change with temperature except in the close vicinity of the N{P}eel temperature, at which, in addition, a small jump in magneti- zation is observed. No evidence for the spin-reorientation transitions proposed in previous Raman and dielectric studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The an- harmonicity is much smaller than previously reported in NMR studies. At room temperature, a circular cycloid is observed, within errors. We argue that the observed anharmonicity provides important clues for understanding electromagnons in BiFeO3.
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly intera cting systems, namely, Luttinger arcs, defined as zeros of the electron Greens function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces. For bilayered Weyl semimetals, we prove two remarkable implications: (i) the precise shape of the Luttinger arcs can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger arcs for Co and Sn terminations in Co$_{3}$Sn$_{2}$S$_{2}$; (ii) the area enclosed by the Fermi and Luttinger arcs equals the surface particle density to zeroth order in the interlayer couplings. We argue that the approximate equivalence survives interactions that are weak enough to leave the system in the Weyl limit, and term this phenomenon weak Luttingers theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا