ﻻ يوجد ملخص باللغة العربية
We performed resonant and nonresonant x-ray diffraction studies of a Nd0.5Sr0.5MnO3 thin film that exhibits a clear first-order transition. Lattice parameters vary drastically at the metal-insulator transition at 170K (=T_MI), and superlattice reflections appear below 140K (=T_CO). The electronic structure between T_MI and T_CO is identified as A-type antiferromagnetic with the d_{x2-y2} ferroorbital ordering. Below T_CO, a new type of antiferroorbital ordering emerges. The accommodation of the large lattice distortion at the first-order phase transition and the appearance of the novel orbital ordering are brought about by the anisotropy in the substrate, a new parameter for the phase control.
An electronic effect on a macroscopic domain structure is found in a strongly correlated half-doped manganite film Nd$_{0.5}$Sr$_{0.5}$MnO3 grown on a (011) surface of SrTiO3. The sample has a high-temperature (HT) phase free from distortion above 18
Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3
We have performed x-ray linear and circular magnetic dichroism experiments at the Mn L2,3-edge of the La0.7Sr0.3MnO3 ultra thin films. Our measurements show that the antiferromagnetic (AF) insulating phase is stabilized by the interfacial rearrangeme
We measured the temperature dependence of the saturation magnetization (Ms) of a (La1-xPrx)1-yCayMnO3 (x ~ 0.60, y ~ 0.33) film as a function of applied bending stress. Stress producing a compressive strain of -0.01% along the magnetic easy axis incr
We measured the magnetization depth profile of a (La1-xPrx)1-yCayMnO3 (x = 0.60pm0.04, y = 0.20pm0.03) film as a function of applied bending stress using polarized neutron reflectometry. From these measurements we obtained a coupling coefficient rela