ﻻ يوجد ملخص باللغة العربية
Large-scale three dimensional molecular dynamics simulations of hopper flow are presented. The flow rate of the system is controlled by the width of the aperture at the bottom. As the steady-state flow rate is reduced, the force distribution $P(f)$ changes only slightly, while there is a large change in the impulse distribution $P(i)$. In both cases, the distributions show an increase in small forces or impulses as the systems approach jamming, the opposite of that seen in previous Lennard-Jones simulations. This occurs dynamically as well for a hopper that transitions from a flowing to a jammed state over time. The final jammed $P(f)$ is quite distinct from a poured packing $P(f)$ in the same geometry. The change in $P(i)$ is a much stronger indicator of the approach to jamming. The formation of a peak or plateau in $P(f)$ at the average force is not a general feature of the approach to jamming.
We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system `flow diagram in the volume fraction/stress plane $(phi,F)$: at low $phi$ the flow i
The drainage of particulate foams is studied under conditions where the particles are not trapped individually by constrictions of the interstitial pore space. The drainage velocity decreases continuously as the particle volume fraction $phi_{p}$ inc
We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jammin
Granular flows through narrow outlets may be interrupted by the formation of arches or vaults that clog the exit. These clogs may be destroyed by vibrations. A feature which remains elusive is the broad distribution $p(tau)$ of clog lifetimes $tau$ m