ﻻ يوجد ملخص باللغة العربية
We study the relaxational dynamics of flux lines in high-temperature superconductors with random pinning using Langevin dynamics. At high temperatures the dynamics is stationary and the fluctuation dissipation theorem (FDT) holds. At low temperatures the system does not equilibrate with its thermal bath: a simple multiplicative aging is found, the FDT is violated and we found that an effective temperature characterizes the slow modes of the system. The generic features of the evolution -- scaling laws -- are dictated by the ones of the single elastic line in a random environment.
Dynamics of vortices in strongly type-II superconductors with strong disorder is investigated within the frustrated three-dimensional XY model. For two typical models in [Phys. Rev. Lett. {bf 91}, 077002 (2003)] and [Phys. Rev. B {bf 68}, 220502(R) (
In this work we study numerically the out of equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Besides its interest as a neural network model it can also be considered as a prototype of fully connected mag
We show that in type-II superconductors a magnetic field applied transversely to correlated columnar disorder, drives a phase transition to a distinct smectic vortex glass (SmVG) state. SmVG is characterized by an infinitely anisotropic electrical tr
Large-scale simulations have been performed on the current-driven two-dimensional XY gauge glass model with resistively-shunted-junction dynamics. It is observed that the linear resistivity at low temperatures tends to zero, providing strong evidence
The thermodynamic $H-T$ phase diagram of Bi$_2$Sr$_2$CaCu$_2$O$_8$ was mapped by measuring local emph{equilibrium} magnetization $M(H,T)$ in presence of vortex `shaking. Two equally sharp first-order magnetization steps are revealed in a single tempe