ﻻ يوجد ملخص باللغة العربية
The formation of stripes in six-leg Hubbard ladders with cylindrical boundary conditions is investigated for two different hole dopings, where the amplitude of the hole density modulation is determined in the limits of vanishing DMRG truncation errors and infinitely long ladders. The results give strong evidence that stripes exist in the ground state of these systems for strong but not for weak Hubbard couplings. The doping dependence of these findings is analysed.
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are d
We investigate the formation of stripes in $7chunks times 6$ Hubbard ladders with $4chunks$ holes doped away from half filling using the density-matrix renormalization group (DMRG) method. A parallelized code allows us to keep enough density-matrix
In this paper, we have systematically studied the single hole problem in two-leg Hubbard and $t$-$J$ ladders by large-scale density-matrix renormalization group calculations. We found that the doped hole in both models behaves similarly with each oth
We study the dynamical spin response of doped two-leg Hubbard-like ladders in the framework of a low-energy effective field theory description given by the SO(6) Gross Neveu model. Using the integrability of the SO(6) Gross-Neveu model, we derive the
We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite, with a non-equal number of sites on the two sublattices. Thus they share a key feature of the Hubba