ترغب بنشر مسار تعليمي؟ اضغط هنا

Annealing-induced changes of the magnetic anisotropy of (Ga,Mn)As epilayers

71   0   0.0 ( 0 )
 نشر من قبل Victor Stanciu
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dependence of the magnetic anisotropy of As-capped (Ga,Mn)As epilayers on the annealing parameters - temperature and time - has been investigated. A uniaxial magnetic anisotropy is evidenced, whose orientation with respect to the crystallographic axes changes upon annealing from [-110] for the as-grown samples to [110] for the annealed samples. Both cubic an uniaxial anisotropies are tightly linked to the concentration of charge carriers, the magnitude of which is controlled by the annealing process.



قيم البحث

اقرأ أيضاً

We report the observation of anomalies in the longitudinal magnetoresistance of tensile-strained (Ga,Mn)As epilayers with perpendicular magnetic anisotropy. Magnetoresistance measurements carried out in the planar geometry (magnetic field parallel to the current density) reveal spikes that are antisymmetric with respect to the direction of the magnetic field. These anomalies always occur during magnetization reversal, as indicated by a simultaneous change in sign of the anomalous Hall effect. The data suggest that the antisymmetric anomalies originate in anomalous Hall effect contributions to the longitudinal resistance when domain walls are located between the voltage probes. This interpretation is reinforced by carrying out angular sweeps of $vec{H}$, revealing an antisymmetric dependence on the helicity of the field sweep.
The influence of annealing parameters - temperature and time - on the magnetic properties of As-capped (Ga,Mn)As epitaxial thin films have been investigated. The dependence of the transition temperature (Tc) on annealing time marks out two regions. T he Tc peak behavior, characteristic of the first region, is more pronounced for thick samples, while for the second (`saturated) region the effect of the annealing time is more pronounced for thin samples. A right choice of the passivation medium, growth conditions along with optimal annealing parameters routinely yield Tc-values of ~ 150 K and above, regardless of the thickness of the epilayers.
We have studied the effects of capping ferromagnetic Ga(1-x)Mn(x)As epilayers with a thin layer of undoped GaAs, and we find that even a few monolayers of GaAs have a significant effect on the ferromagnetic properties. In particular, the presence of a capping layer only 10 monolayers thick completely suppresses the enhancement of the ferromagnetism associated with low temperature annealing. This result, which demonstrates that the surface of a Ga(1-x)Mn(x)As epilayer strongly affects the defect structure, has important implications for the incorporation of Ga(1-x)Mn(x)As into device heterostructures.
227 - C. King , J. Zemen , K. Olejnik 2010
We present an experimental and theoretical study of magnetocrystalline anisotropies in arrays of bars patterned lithographically into (Ga,Mn)As epilayers grown under compressive lattice strain. Structural properties of the (Ga,Mn)As microbars are inv estigated by high-resolution X-ray diffraction measurements. The experimental data, showing strong strain relaxation effects, are in good agreement with finite element simulations. SQUID magnetization measurements are performed to study the control of magnetic anisotropy in (Ga,Mn)As by the lithographically induced strain relaxation of the microbars. Microscopic theoretical modeling of the anisotropy is performed based on the mean-field kinetic-exchange model of the ferromagnetic spin-orbit coupled band structure of (Ga,Mn)As. Based on the overall agreement between experimental data and theoretical modeling we conclude that the micropatterning induced anisotropies are of the magnetocrystalline, spin-orbit coupling origin.
Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements have revealed the presence of ripples aligned along the $[1bar{1}0]$ direction on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer layers, with perio dicity of about 50 nm in all samples that have been studied. These samples show the strong symmetry breaking uniaxial magnetic anisotropy normally observed in such materials. We observe a clear correlation between the amplitude of the surface ripples and the strength of the uniaxial magnetic anisotropy component suggesting that these ripples might be the source of such anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا