ﻻ يوجد ملخص باللغة العربية
We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma-phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. Using a formulation of the total energy as a functional of the local density and of the f-orbital local Greens functions, we perform dynamical mean-field theory calculations within a new implementation based on the multiple LMTO method, which allows to include semi-core states. Our results are consistent with the experimental energy differences and with the qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization energy of the alpha phase as the quasiparticle Kondo resonance develops.
The $alpha$-$gamma$ transition in cerium has been studied in both zero and finite temperature by Gutzwiller density functional theory. We find that the first order transition between $alpha$ and $gamma$ phases persists to the zero temperature with ne
The $gamma to alpha$ isostructural transition in the Ce$_{0.9-x}$La$_x$Th$_{0.1}$ system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discont
Structural and electronic properties of the alpha- and gamma-phases of cerium sesquisulfide, Ce2S3, are examined by first-principles calculations using the GGA+U extension of density functional theory. The strongly correlated f-electrons of Ce are de
The temperature and pressure dependence of the thermal displacements and lattice parameters were obtained across the $gamma to alpha$ phase transition of Ce using high-pressure, high-resolution neutron and synchrotron x-ray powder diffraction. The es
We report on the most complete investigation to date of the 4f-electron properties at the gamma-alpha transition in elemental Ce by resonant inelastic x-ray scattering (RIXS). The Ce 2p3d-RIXS spectra were measured directly in the bulk material as a