ﻻ يوجد ملخص باللغة العربية
We demonstrate wafer-scale integration of single electron memories based on carbon nanotube field effect transistors (cnfets) by a complete self assembly process. First, a dry self assembly based on a Hot Filament assisted Chemical Vapor Deposition technique allows both localized growth and in situ electrical connection of carbon nanotubes on predefined catalytic electrodes. The semiconducting carbon nanotubes integration yield can exceed 50% for a batch. Secondly, a wet self-assembly attaches single 30 nm-diameter gold bead in the nanotube vicinity via chemical functionalization. The bead acts as the memory storage node while the cnfet operated in the subthreshold regime is an electrometer having exponential gain. Below 50 K, the transfer characteristics of some functionalized cnfets show highly reproducible hysteretical steps whose height can reach one decade of current. Evaluation of the capacitance confirms these current steps originate from single electron transfers between the bead and the nanotubes with a time retention exceeding 550s at 1.5K.
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy
We have reproducibly contacted gated single wall carbon nanotubes (SWCNT) to superconducting leads based on niobium. The devices are identified to belong to two transparency regimes: The Coulomb blockade and the Kondo regime. Clear signature of the s
In this Letter we demonstrate that Permalloy (Py), a widely used Ni/Fe alloy, forms contacts to carbon nanotubes (CNTs) that meet the requirements for the injection and detection of spin-polarized currents in carbon-based spintronic devices. We estab
We demonstrate the effect of single-electron tunneling (SET) through a carbon nanotube quantum dot on its nanomechanical motion. We find that the frequency response and the dissipation of the nanoelectromechanical system (NEMS) to SET strongly depend
Junctionless transistors made of silicon have previously been demonstrated experimentally and by simulations. Junctionless devices do not require fabricating an abrupt source-drain junction and thus can be easier to implement in aggressive geometries