ﻻ يوجد ملخص باللغة العربية
Thermal conductivity and specific heat were measured in the superconducting state of the heavy fermion material Ce_{1-x}La_{x}CoIn_{5}. With increasing impurity concentration x, the suppression of T_{c} is accompanied by the increase in the residual electronic specific heat expected of a d-wave superconductor, but it occurs in parallel with a decrease in residual electronic thermal conductivity. This contrasting behavior reveals the presence of uncondensed electrons coexisting with nodal quasiparticles. An extreme multiband scenario is proposed, with a d-wave superconducting gap on the heavy-electron sheets of the Fermi surface and a negligible gap on the light, three-dimensional pockets.
The superconducting gap structure of recently discovered heavy fermion superconductor PrOs4Sb12 was investigated by using thermal transport measurements in magnetic field rotated relative to the crystal axes. We demonstrate that a novel change in the
We investigated the magnetic phase diagram of the first Pr-based heavy fermion superconductor PrOs4Sb12 by means of high-resolution dc magnetization measurements in low temperatures down to 0.06K. The temperature dependence of the magnetization M(T)
We have performed high-resolution powder x-ray diffraction measurements on a sample of $^{242}$PuCoGa$_{5}$, the heavy-fermion superconductor with the highest critical temperature $T_{c}$ = 18.7 K. The results show that the tetragonal symmetry of its
We report field-orientation specific heat studies of the pressure-induced heavy fermion superconductor CeRhIn5. Theses experiments provide the momentum-dependent superconducting gap function for the first time in any pressure-induced superconductor.
The field-orientation dependent thermal conductivity of the heavy-fermion superconductor UPt$_3$ was measured down to very low temperatures and under magnetic fields throughout three distinct superconducting phases: A, B, and C phases. In the C phase