ﻻ يوجد ملخص باللغة العربية
An explicit expression is derived for the scattering function of a self-avoiding polymer chain in a $d$-dimensional space. The effect of strength of segment interactions on the shape of the scattering function and the radius of gyration of the chain is studied numerically. Good agreement is demonstrated between experimental data on dilute solutions of several polymers and results of numerical simulation.
We introduce an efficient nonreversible Markov chain Monte Carlo algorithm to generate self-avoiding walks with a variable endpoint. In two dimensions, the new algorithm slightly outperforms the two-move nonreversible Berretti-Sokal algorithm introdu
We have explained in detail why the canonical partition function of Interacting Self Avoiding Walk (ISAW), is exactly equivalent to the configurational average of the weights associated with growth walks, such as the Interacting Growth Walk (IGW), if
We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at $(L, L)$, and are entirely contained in the square $[0, L] times [0, L]$ on the square lattice ${mathbb Z}^2$. The number of distinct walks is known to
A simple periodically driven system displaying rich behavior is introduced and studied. The system self-organizes into a mosaic of static ordered regions with three possible patterns, which are threaded by one-dimensional paths on which a small numbe
In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering functi