ﻻ يوجد ملخص باللغة العربية
A novel method to investigate the compaction behaviour of cohesive powders is presented. As a sample, a highly porous agglomerate formed by random ballistic deposition (RBD) of micron sized spherical particles is used. A nanomanipulator deforms this small structure under scanning electron microscope observation, allowing for the tracking of individual particle motion. Defined forces are applied and the resulting deformations are measured. The hereby obtained results are compared to results from threedimensional discrete element simulations as well as macroscopic compaction experiments. Relevant simulation parameters are determined by colloidal probe measurements.
We propose a theory which describes the density relaxation of loosely packed, cohesionless granular material under mechanical tapping. Using the compactivity concept we develope a formalism of statistical mechanics which allows us to calculate the de
As an example for history dependent mechanical behaviour of cohesive powders experiments and computer simulations of uniaxial consolidation are compared. Some samples were precompacted transversally to the consolidation direction and hence had a diff
We analyze the consolidation of freshly deposited cohesive and non-cohesive sediment by means of particle-resolved direct Navier-Stokes simulations based on the Immersed Boundary Method. The computational model is parameterized by material properties
We use molecular dynamics simulations to investigate the microscopic and macroscopic response of model polymer networks to uniaxial elongations. By studying networks with strands lengths ranging from $N_s=20$ to 200 we cover the full crossover from c
Magnetotransport measurements on small single crystals of Cr, the elemental antiferromagnet, reveal the hysteretic thermodynamics of the domain structure. The temperature dependence of the transport coefficients is directly correlated with the real-s