ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film

114   0   0.0 ( 0 )
 نشر من قبل Alejandro Vladimiro Silhanek
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of artificial defects is known to enhance the superconducting critical parameters of thin films. In the case of conventional superconductors, regular arrays of submicron holes (antidots) substantially increase the critical temperature Tc(H) and critical current Ic(H) for all fields. Using electrical transport measurements, we study the effect of placing an additional small antidot in the unit cell of the array. This composite antidot lattice consists of two interpenetrating antidot square arrays with a different antidot size and the same lattice period. The smaller antidots are located exactly at the centers of the cells of the array of large antidots. We show that the composite antidot lattice can trap a higher number of flux quanta per unit cell inside the antidots, compared to a reference antidot film without the additional small antidots in the center of the cells. As a consequence, the field range in which an enhanced critical current is observed is considerably expanded. Finally, the possible stable vortex lattice patterns at several matching fields are determined by molecular dynamics simulations.



قيم البحث

اقرأ أيضاً

Conformal crystals are non-uniform structures created by a conformal transformation of regular two-dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning array exhibit substantially stronger pinning effects o ver a much larger range of field than found for random or periodic pinning arrangements. The pinning enhancement is partially due to matching of the critical flux gradient with the pinning gradient, but the preservation of the sixfold ordering in the conformally transformed hexagonal lattice plays a crucial role. Our results can be generalized to a wide class of gradient-driven interacting particle systems such as colloids on optical trap arrays.
The vortex dynamics in superconducting films deposited on top of a five-fold Penrose array of magnetic dots is studied by means of transport measurements. We show that in the low pinning regime (demagnetized dots) a few periodic and aperiodic matchin g features coexist. In the strong pinning regime (magnetized dots) a richer structure of unforeseen periodic and aperiodic vortex patterns appear giving rise to a clear enhancement of the critical current in a broader field range. Possible stable vortex configurations are determined by molecular dynamics simulations.
The behavior of a disordered amorphous thin film of superconducting Indium Oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance vs. temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.
In superconducting thin films, engineered lattice of antidots (holes) act as an array of columnar pinning sites for the vortices and thus lead to vortex matching phenomena at commensurate fields guided by the lattice spacing. The strength and nature of vortex pinning is determined by the geometrical characteristics of the antidot lattice (such as the lattice spacing $a_0$, antidot diameter $d$, lattice symmetry, orientation, etc) along with the characteristic length scales of the superconducting thin films, viz., the coherence length ($xi$) and the penetration depth ($lambda$). There are at least two competing scenarios: (i) multiple vortices sit on each of the antidots at a higher matching period, and, (ii) there is nucleation of vortices at the interstitial sites at higher matching periods. Furthermore it is also possible for the nucleated interstitial vortices to reorder under suitable conditions. We present our experimental results on NbN antidot arrays in the light of the above scenarios.
263 - K. Yu 2008
The controlled motion of objects through narrow channels is important in many fields. We have fabricated asymmetric weak-pinning channels in a superconducting thin-film strip for controlling the dynamics of vortices. The lack of pinning allows the vo rtices to move through the channels with the dominant interaction determined by the shape of the channel walls. We present measurements of vortex dynamics in the channels and compare these with similar measurements on a set of uniform-width channels. While the uniform-width channels exhibit a symmetric response for both directions through the channel, the vortex motion through the asymmetric channels is quite different, with substantial asymmetries in both the static depinning and dynamic flux flow. This vortex ratchet effect has a rich dependence on magnetic field and driving force amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا