ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetics of metal slabs and clusters: the rectangle-box model

111   0   0.0 ( 0 )
 نشر من قبل Eugene Vasyutin
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An expansion of energy characteristics of wide thin slab of thickness L in power of 1/L is constructed using the free-electron approximation and the model of a potential well of finite depth. Accuracy of results in each order of the expansion is analyzed. Size dependences of the work function and electronic elastic force for Au and Na slabs are calculated. It is concluded that the work function of low-dimensional metal structure is always smaller that of semi-infinite metal sample. A mechanism for the Coulomb instability of charged metal clusters, different from Rayleighs one, is discussed. The two-component model of a metallic cluster yields the different critical sizes depending on a kind of charging particles (electrons or ions). For the cuboid clusters, the electronic spectrum quantization is taken into account. The calculated critical sizes of Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental data. A qualitative explanation is suggested for the Coulomb explosion of positively charged Na_{N}^{n+} clusters at 3<n<5.



قيم البحث

اقرأ أيضاً

159 - V. V. Pogosov , V. I. Reva 2017
We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters $c_{v}$ (relative concentration of vacanci es) and $R_{N,v}^{-1}$, $R_{N,v}$ being cluster radius. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance, dissociation, cohesion and monovacancy-formation energies of the small perfect clusters Na$_{N}$, Mg$_{N}$, Al$_{N}$ ($N leq 270$) and the clusters containing a monovacancy ($Ngeq 12$) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the bubble blowing scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters, the size dependences of their characteristics and asymptotics is discussed. It is shown that difference between the characteristics for the neutral and charged cluster is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.
The vibrational properties of alkaline-earth metal fluoride clusters (BaF2)n (n=1-6) are investigated in the framework of density functional theory. The calculated Raman and Infrared (IR) spectra reveals shift in Raman and IR peak position towards lo wer frequency region with the increase in the cluster size. Further the calculated spectra have been compared with the experimental vibrational spectra of bulk BaF2 crystal. Even though the smaller size cluster lacks translational symmetry, the structural and vibrational characteristic of (BaF2)5-6 are nearer to bulk counterpart.
103 - Valerij S. Gurin 2018
A series of the lead chalcogenide clusters PbnXn (X=S,Se; n=4,8,16,32) with structures as fragments of the bulk crystalline lattice are calculated at DFT level with B3LYP functional and ECP basis set. Optical absorption spectra are simulated through the TDDFT method. The results are in consistence with experimental data PbS and PbSe for magic size clusters of this size range.
Morphology and its stability are essential features to address physicochemical properties of metallic nanoparticles. By means of Molecular Dynamics based simulations we show a complex dependence on the size and material of common structural mechanism s taking place in mono-metallic nanoparticles at icosahedral magic sizes. We show that the well known Lipscomb s Diamond Square Diamond mechanisms, single step screw dislocation motions of the whole cluster, take place only below a given size which is material dependent. Above that size, layer by layer dislocations and/or surface peeling are likely to happen, leading to low symmetry defected motifs. The material dependence of this critical size is similar to the crossover sizes among structural motifs, based on the ration between the bulk modulus and atomic cohesive energy.
We present a systematic study of the photo-absorption spectra of various Si$_{n}$H$_{m}$ clusters (n=1-10, m=1-14) using the time-dependent density functional theory (TDDFT). The method uses a real-time, real-space implementation of TDDFT involving f ull propagation of the time dependent Kohn-Sham equations. Our results for SiH$_{4}$ and Si$_{2}$H$_{6}$ show good agreement with the earlier calculations and experimental data. We find that for small clusters (n<7) the photo-absorption spectrum is atomic-like while for the larger clusters it shows bulk-like behaviour. We study the photo-absorption spectra of silicon clusters as a function of hydrogenation. For single hydrogenation, we find that in general, the absorption optical gap decreases and as the number of silicon atoms increase the effect of a single hydrogen atom on the optical gap diminishes. For further hydrogenation the optical gap increases and for the fully hydrogenated clusters the optical gap is larger compared to corresponding pure silicon clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا