ﻻ يوجد ملخص باللغة العربية
We point out the possibility of having a roton-type excitation spectrum in a quasi-1D Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar interaction using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped configuration can be achieved whose spectrum contains a `roton minimum analogous to that found in helium II. Dipolar gases also offer the exciting prospect to tune the depth of this `roton minimum by directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis the system is once again unstable, possibly to the formation of a density wave.
We study a gaseous Bose-Einstein condensate with laser-induced dipole-dipole interactions using the Hartree-Fock-Bogoliubov theory within the Popov approximation. The dipolar interactions introduce long-range atom-atom correlations, which manifest th
We derive an exact solution to the Thomas-Fermi equation for a Bose-Einstein condensate which has dipole-dipole interactions as well as the usual s-wave contact interaction, in a harmonic trap. Remarkably, despite the non-local anisotropic nature of
We have investigated the expansion of a Bose-Einstein condensate (BEC) of strongly magnetic chromium atoms. The long-range and anisotropic magnetic dipole-dipole interaction leads to an anisotropic deformation of the expanding Cr-BEC which depends on
We consider a trapped cigar-shaped atomic Bose-Einstein condensate irradiated by a single far-off resonance laser polarized along the cigar axis. The resulting laser induced dipole-dipole interactions between the atoms significantly change size of th
We produce Bose-Einstein condensates of 6Li2 molecules in a low power (22 W) crossed optical dipole trap. Fermionic 6Li atoms are collected in a magneto-optical trap from a Zeeman slowed atomic beam, then loaded into the optical dipole trap where the