ترغب بنشر مسار تعليمي؟ اضغط هنا

Interactions between Polymers and Nanoparticles : Formation of Supermicellar Hybrid Aggregates

54   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Berret
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When polyelectrolyte-neutral block copolymers are mixed in solutions to oppositely charged species (e.g. surfactant micelles, macromolecules, proteins etc), there is the formation of stable supermicellar aggregates combining both components. The resulting colloidal complexes exhibit a core-shell structure and the mechanism yielding to their formation is electrostatic self-assembly. In this contribution, we report on the structural properties of supermicellar aggregates made from yttrium-based inorganic nanoparticles (radius 2 nm) and polyelectrolyte-neutral block copolymers in aqueous solutions. The yttrium hydroxyacetate particles were chosen as a model system for inorganic colloids, and also for their use in industrial applications as precursors for ceramic and opto-electronic materials. The copolymers placed under scrutiny are the water soluble and asymmetric poly(sodium acrylate)poly(acrylamide) diblocks. Using static and dynamical light scattering experiments, we demonstrate the analogy between surfactant micelles and nanoparticles in the complexation phenomenon with oppositely charged polymers. We also determine the sizes and the aggregation numbers of the hybrid organic-inorganic complexes. Several additional properties are discussed, such as the remarkable stability of the hybrid aggregates and the dependence of their sizes on the mixing conditions.



قيم البحث

اقرأ أيضاً

Using monomer-resolved Molecular Dynamics simulations and theoretical arguments based on the radial dependence of the osmotic pressure in the interior of a star, we systematically investigate the effective interactions between hard, colloidal particl es and star polymers in a good solvent. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality) attached to the common center of the star. By covering a wide range of qs ranging from zero (star against a flat wall) up to about 0.75, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. A modified expression for the star-star interaction for low functionalities, f < 10 is also introduced.
Aggregation of like-charged polymers is widely observed in biological and soft matter systems. In many systems, bundles are formed when a short-range attraction of diverse physical origin like charge-bridging, hydrogen-bonding or hydrophobic interact ion, overcomes the longer- range charge repulsion. In this Letter, we present a general mechanism of bundle formation in these systems as the breaking of the translational invariance in parallel aligned polymers with competing interactions of this type. We derive a criterion for finite-sized bundle formation as well as for macroscopic phase separation (formation of infinite bundles).
The thermodynamic and elastic properties of a flexible polymer in the presence of dipole interactions are studied via Monte Carlo simulations. The structural coil-globular, solid-globular, and solid-solid transitions are mapped in the hyperphase diag ram, parameterized by the dipole concentration, $eta$, and temperature, $T$. Polymer flexibility is usually quantified by the persistent length, $ell_p$, which is defined as the length on which the bond-bond correlation is lost. Non-monotonic flexibility of polymeric complexes as a function of $eta$ has been interpreted as a cooperative effect under the Worm-Like Chain model. Instead of the usual exponential behavior, $langle Cleft(kright)ranglepropto e^{-k/ell_p}$, here we show that the bond-bond correlation follows a power law decay, $langle Cleft(kright)rangleapprox c_0k^{-omega}$. The power law regime holds even at the coil-globular transition, where a Gaussian limit is expected, originated from non-leading terms due to monomer-monomer connectivity. The exponent $omega$ monotonically converges to the mbox{SAW} limit for large $eta$, if the isotherm pathway is constructed at the coil phase. The deviation from ideality in better probed at the chain segment size, and the expected $Theta-$condition at the $(T,eta)$ pathway near the coil-globular transition is not observed.
Thin films of azopolymer-nanoparticles hybrid materials were fabricated with poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl] (PAZO) and different concentrations of Ag and AgAu nanoparticles (NPs). By illuminating the film s with polarized interference patterns, surface relief gratings (SRGs) were recorded. It was found that for some concentrations of NPs their modulations and diffraction efficiency were higher than the obtained for PAZO films without NPs. The effect was mainly explained by the increase of the free volume available for the photoisomerization for certain concentrations of NPs. The dependence of the diffraction efficiency on concentration was directly related to changes in modulation depth. When doping with NPs, the maximum efficiency increases more than two times the efficiency without NPs.
We report the results of molecular dynamics simulations of the properties of a pseudo-atom model of dodecane thiol ligated 5-nm diameter gold nanoparticles (AuNP) in vacuum as a function of ligand coverage and particle separation in three state of ag gregation: the isolated AuNP, an isolated pair of AuNPs and a square assembly of AuNPs. Our calculations show that for all values of the coverage the ligand density along a radius emanating from the core of an isolated AuNP oscillates along the chain up to the fourth pseudo-atom, then smoothly decays to zero. We examine the ligand envelope as a function of the coverage and demonstrate that the deformation of that envelope generated by interaction between the NPs is coverage-dependent, so that the shape, depth and position of the minimum of the potential of mean force displays a systematic dependence on the coverage. We propose an accurate analytical description of the calculated potential of mean force with parameters that scale linearly with the ligand coverage. We define and calculate an effective pair potential of mean force for a square configuration of particles; our definition contains, implicitly, both the three- and four-particle contributions to deviation from additivity. We find that the effective pair potential of mean force in this configuration has a different minimum and a different well depth than the isolated pair potential of mean force. Previous work has found that the three-particle contribution to deviation from additivity is monotone repulsive, whereas we find that the combined three- and four-particle contributions have an attractive well, implying that the three- and four-particle contributions are of comparable magnitude but opposite sign, thereby suggesting that even higher order correction terms likely play a significant role in the behavior of assemblies of many nanoparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا