ﻻ يوجد ملخص باللغة العربية
We present the first study of a magnetic quantum phase transition in the itinerant-electron ferromagnet Ni3Al at high pressures. Electrical resistivity measurements in a diamond anvil cell at hydrostatic pressures up to 100 kbar and temperatures as low as 50 mK indicate that the Curie temperature collapses towards absolute zero at a critical pressure pc=82(2) kbar. Over wide ranges in pressure and temperature, both in the ferromagnetic and paramagnetic states, the temperature variation of the resistivity is found to deviate from the conventional Fermi-liquid form. We consider the extent to which this deviation can be understood in terms of a mean-field model of enhanced spin fluctuations on the border of ferromagnetism in three dimensions.
We studied single-crystalline Pr0.5Sr0.5MnO3 by means of measurements of magnetic susceptibility and specific heat at ambient pressure (P), and electrical resistivity (r) in hydrostatic pressures up to 2 GPa. This material displays ferromagnetic (FM)
The pressure-induced changes in the temperature-dependent thermopower S(T) and electrical resistivity rho(T) of CeRu_2Ge_2 are described within the single-site Anderson model. The Ce-ions are treated as impurities and the coherent scattering on diffe
We have measured resistivity as a function of temperature and pressure of Ti4O7 twinned crystals using different contact configurations. Pressures over 4kbar depress the localization of bipolarons and allow the study of the electrical conduction of t
We have performed high-pressure, electrical resistivity, and specific heat measurements on CeTe3 single crystals. Two magnetic phases with nonparallel magnetic easy axes were detected in electrical resistivity and specific heat at low temperatures. W
The intertwined charge, spin, orbital, and lattice degrees of freedom could endow 5d compounds with exotic properties. Current interest is focused on electromagnetic interactions in these materials, whereas the important role of lattice geometry rema