ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Raman response in anisotropic metals

217   0   0.0 ( 0 )
 نشر من قبل Dirk Manske
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a generalized response theory we derive the electronic Raman response function for metals with anisotropic relaxation rates. The calculations account for the long--range Coulomb interaction and treat the collision operator within a charge conserving relaxation time approximation. We extend earlier treatments to finite wavenumbers ($|{bf q}|ll k_{rm F}$) and incorporate inelastic electron--electron scattering besides elastic impurity scattering. Moreover we generalize the Lindhard density response function to the Raman case. Numerical results for the quasiparticle scattering rate and the Raman response function for cuprate superconductors are presented.



قيم البحث

اقرأ أيضاً

Superconductivity in the cuprates is characterized by spatial inhomogeneity and an anisotropic electronic gap of d-wave symmetry. The aim of this work is to understand how this anisotropy affects the non-equilibrium electronic response of high-Tc sup erconductors. We compare the nodal and antinodal non-equilibrium response to photo-excitations with photon energy comparable to the superconducting gap and polarization along the Cu-Cu axis of the sample. The data are supported by an effective d-wave BCS model indicating that the observed enhancement of the superconducting transient signal mostly involves an increase of pair coherence in the antinodal region, which is not induced at the node.
We formulate a theory for the polarization-dependence of the electronic (pair-breaking) Raman response for the recently discovered non-centrosymmetric superconductors in the clean limit at zero temperature. Possible applications include the systems C ePt$_3$Si and Li$_2$Pd$_x$Pt$_{3-x}$B which reflect the two important classes of the involved spin-orbit coupling. We provide analytical expressions for the Raman vertices for these two classes and calculate the polarization dependence of the electronic spectra. We predict a two-peak structure and different power laws with respect to the unknown relative magnitude of the singlet and triplet contributions to the superconducting order parameter, revealing a large variety of characteristic fingerprints of the underlying condensate.
We present Raman experiments on underdoped and overdoped Bi2Sr2CaCu2O(8+d) (Bi-2212) single crystals. We reveal the pseudogap in the electronic Raman spectra in the B1g and B2g geometries. In these geometries we probe respectively, the antinodal (AN) and nodal (N) regions corresponding to the principal axes and the diagonal of the Brillouin zone. The pseudogap appears in underdoped regime and manifests itself in the B1g spectra by a strong depletion of the low energy electronic continuum as the temperature decreases. We define a temperature T* below which the depletion appears and the pseudogap energy, omegaPG the energy at which the depeletion closes. The pseudogap is also present in the B2g spectra but the depletion opens at higher energy than in the B1g spectra. We observe the creation of new electronic states inside the depletion as we enter the superconducting phase. This leads us to conclude (as proposed by S. Sakai et al.) that the pseudogap has a different structure than the superconducting gap and competes with it. We show that the nodal quasiparticle dynamic is very robust and almost insensitive to the pseudogap phase contrary to the antinodal quasiparticle dynamic. We finally reveal, in contrast to what it is usually admitted,an increase of the nodal quasiparticle spectral weight with underdoping. We interpret this result as the consequence of a possible Fermi surface disturbances in the doping range p=0.1-0.2.
85 - M. Puviani , A. Baum , S. Ono 2020
In superconductors the Anderson-Higgs mechanism allows for the existence of a collective amplitude (Higgs) mode which can couple to light only in a non-linear Raman-like process. While the observed properties of the Higgs mode in conventional, isotro pic superconductors can be explained in a mean-field picture, strong interaction effects with other modes in anisotropic d-wave superconductors are likely. Here we calculate the Raman contribution of the Higgs mode from a new perspective, including many-body Higgs oscillations effects and their consequences in steady-state Raman spectroscopy. This solves the long-standing problem of the A1g symmetry Raman spectrum in d-wave superconductors. In order to test our theory, we predict the presence of measurable characteristic oscillations in THz quench-optical probe time-dependent reflectivity experiments.
While the low frequency electronic Raman response in the superconducting state of the cuprates can be largely understood in terms of a d-wave energy gap, a long standing problem has been an explanation for the spectra observed in A_{1g} polarization orientations. We present calculations which suggest that the peak position of the observed A_{1g} spectra is due to a collective spin fluctuation mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا