ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Optical Response of a High-Reflectivity GaAs/AlAs Bragg Mirror

377   0   0.0 ( 0 )
 نشر من قبل Sara Hastings
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultrafast response of a high-reflectivity GaAs/AlAs Bragg mirror to optical pumping is investigated for all-optical switching applications. Both Kerr and free carrier nonlinearities are induced with 100 fs, 780 nm pulses with a fluence of 0.64 kJ/m^2 and 0.8 kJ/m^2. The absolute transmission of the mirror at 931 nm increases by a factor of 27 from 0.0024% to 0.065% on a picosecond timescale. These results demonstrate the potential for a high-reflectivity ultrafast switchable mirror for quantum optics and optical communication applications. A design is proposed for a structure to be pumped below the bandgaps of the semiconductor mirror materials. Theoretical calculations on this structure show switching ratios up to 2200 corresponding to switching from 0.017% to 37.4% transmission.



قيم البحث

اقرأ أيضاً

78 - H.R. Boehm , S. Gigan , G. Langer 2006
We report on the fabrication and characterization of a micromechanical oscillator consisting only of a free-standing dielectric Bragg mirror with high optical reflectivity and high mechanical quality. The fabrication technique is a hybrid approach in volving laser ablation and dry etching. The mirror has a reflectivity of 99.6%, a mass of 400ng, and a mechanical quality factor Q of approximately 10^4. Using this micromirror in a Fabry Perot cavity, a finesse of 500 has been achieved. This is an important step towards designing tunable high-Q high-finesse cavities on chip.
119 - Z. A. Ibrahim 2007
A novel approach has been developed to calculate the temperature dependence of the optical response of a semiconductor. The dielectric function is averaged over several thermally perturbed configurations that are extracted from molecular dynamic simu lations. The calculated temperature dependence of the imaginary part of the dielectric function of GaAs is presented in the range from 0 to 700 K. This approach that explicitly takes into account lattice vibrations describes well the observed thermally-induced energy shifts and broadening of the dielectric function.
We study the time-resolved reflectivity spectrum of a switched planar GaAs-AlAs microcavity. Between 5 and 40 ps after the switching (pump) pulse we observe a strong excess probe reflectivity and a change of the frequency of light trapped in the cavi ty up to 5 linewidths away from the cavity resonance. This frequency change does not adiabatically follow the fast-changing cavity resonance. The frequency change is attributed to an accumulated phase change due to the time-dependent refractive index. An analytical model predicts dynamics in qualitative agreement with the experiments, and points to crucial parameters that control future applications.
The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wavevector $bf k$. Whereas for {it 3D bulk zincblende} solids the electron (heavy hole) SS exhibits a cubic (linear) scaling with $k$, in {it 2D quantum-wells} the electron (heavy hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly in a multi-band many-body approach we discover a large linear scaling of hole states in 2D. This scaling emerges from hole bands coupling that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k-scaling for holes in 2D implies a different understanding of hole-physics in low-dimensions.
We investigate the hot carrier dynamics of ZrTe$_5$ by ultrafast time-resolved optical reflectivity. Our results reveal a phonon-mediated across-gap recombination, consistent with its temperature-dependent gap nature as observed previously by photoem ission. In addition, two distinct relaxations with a kink feature right after initial photoexcitation are well resolved, suggesting the complexity of electron thermalization process. Our findings indicate that correlated many-body effects play important role for the transient dynamics of ZrTe$_5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا