ﻻ يوجد ملخص باللغة العربية
We report the discovery of a new mechanism of spontaneous generation of a magnetic flux in a superconductor cooled through $T_c$. The sign of the spontaneous flux changes randomly from one cooldown to the next, and follows a Gaussian distribution. The width of the distribution increases with the size of the temperature gradient in the sample. Our observations appear inconsistent with the well known mechanisms of flux generation. The dependence on the temperature gradient suggests that the flux may be generated through an instability of the thermoelectric superconducting-normal quasiparticle counterflow.
We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral super- conductivity, which could be observed in layered mate
Polarized beam neutron scattering measurements on a highly perfect crystal of ${rm YBa_2Cu_3O_{6.6}}$ show a distinct magnetic transition with an onset at about 235K, the temperature expected for the pseudogap transition. The moment is found to be ab
This article addresses the question whether the magnetic flux of stationary vortices or of half flux quanta generated by frustrated superconducting rings is noisy. It is found that the flux noise generated intrinsically by a superconductor is, in goo
The order of the vortex state in La_{1.9} Sr_{0.1} CuO_{4} is probed using muon spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines.
A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system.