ﻻ يوجد ملخص باللغة العربية
We present a theoretical treatment of the surprisingly large damping observed recently in one-dimensional Bose-Einstein atomic condensates in optical lattices. We show that time-dependent Hartree-Fock-Bogoliubov (HFB) calculations can describe qualitatively the main features of the damping observed over a range of lattice depths. We also derive a formula of the fluctuation-dissipation type for the damping, based on a picture in which the coherent motion of the condensate atoms is disrupted as they try to flow through the random local potential created by the irregular motion of noncondensate atoms. We expect this irregular motion to result from the well-known dynamical instability exhibited by the mean-field theory for these systems. When parameters for the characteristic strength and correlation times of the fluctuations, obtained from the HFB calculations, are substituted in the damping formula, we find very good agreement with the experimentally-observed damping, as long as the lattice is shallow enough for the fraction of atoms in the Mott insulator phase to be negligible. We also include, for completeness, the results of other calculations based on the Gutzwiller ansatz, which appear to work better for the deeper lattices.
Understanding the relaxation process is the most important unsolved problem in non-equilibrium quantum physics. Current understanding primarily concerns on if and how an isolated quantum many-body system thermalize. However, there is no clear underst
We show how the remotest sites of a finite lattice can be entangled, with the amount of entanglement exceeding that of a singlet, solely through the dynamics of an ideal Bose gas in a special initial state in the lattice. When additional occupation n
Using the Crank-Nicholson method, we study the evolution of a Bose-Einstein condensate in an optical lattice and harmonic trap. The condensate is excited by displacing it from the center of the harmonic trap. The mean field plays an important role in
We study equilibrium properties of Bose-Condensed gases in a one-dimensional (1D) optical lattice at finite temperatures. We assume that an additional harmonic confinement is highly anisotropic, in which the confinement in the radial directions is mu
We investigate a strongly-correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdos to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott i