ﻻ يوجد ملخص باللغة العربية
Many theories published in the last decade propose that either ordered or disordered local moments are present in elemental plutonium at low temperatures. We present new experimental data and review previous experimental results. None of the experiments provide any evidence for ordered or disordered magnetic moments (either static or dynamic) in plutonium at low temperatures, in either the alpha- or delta-phases. The experiments presented and discussed are magnetic susceptibility,electrical resistivity, NMR, specific heat, and both elastic and inelastic neutronscattering. Many recent calculations correctly predict experimentally observed atomic volumes, including that of delta-Pu. These calculations achieve observed densities by the localization of electrons, which then give rise to magnetic moments. However, localized magnetic moments have never been observed experimentally in Pu. A theory is needed that is in agreement with all the experimental observations. Two theories are discussed that might provide understanding of the ensemble of unusual properties of Pu, including the absence of experimental evidence for localized magnetic moments; an issue that has persisted for over 50 years.
Based on experimental 59Co-NMR data in the temperature range between 0.1 and 300 K, we address the problem of the character of the Co 3d-electron based magnetism in Na0.7CoO2. Temperature dependent 59Co-NMR spectra reveal different Co environments be
Ultra-thin Pt films grown on insulating ferrimagnetic CoFe2O4 (111) epitaxial films display a magnetoresistance upon rotating the magnetization of the magnetic layer. We report here X-ray magnetic circular dichroism (XMCD) recorded at Pt-L2,3 and Pt-
Polycrystalline ceramic samples and a single crystal of EuTiO3 have been investigated by Raman spectroscopy in the temperature range 80-300 K. Although synchrotron XRD data clearly indicated the cubic to tetragonal phase transition around 282 K, no m
Plutonium metal exhibits an anomalously large softening of its bulk modulus at elevated temperatures that is made all the more extraordinary by the finding that it occurs irrespective of whether the thermal expansion coefficient is positive, negative
We present results of a combined density functional and many-body calculations for the electronic and magnetic properties of the defect-free digital ferromagnetic heterostructures obtained by doping GaAs with Cr and Mn. While local density approximat