ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous dissociation of long-range Feshbach molecules

73   0   0.0 ( 0 )
 نشر من قبل Thorsten Koehler
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spontaneous dissociation of diatomic molecules produced in cold atomic gases via magnetically tunable Feshbach resonances. We provide a universal formula for the lifetime of these molecules that relates their decay to the scattering length and the loss rate constant for inelastic spin relaxation. Our universal treatment as well as our exact coupled channels calculations for $^{85}$Rb dimers predict a suppression of the decay over several orders of magnitude when the scattering length is increased. Our predictions are in good agreement with recent measurements of the lifetime of $^{85}$Rb$_2$.



قيم البحث

اقرأ أيضاً

Ultracold molecules can be associated from ultracold atoms by ramping the magnetic field through a Feshbach resonance. A reverse ramp dissociates the molecules. Under suitable conditions, more than one outgoing partial wave can be populated. A theore tical model for this process is discussed here in detail. The model reveals the connection between the dissociation and the theory of multichannel scattering resonances. In particular, the decay rate, the branching ratio, and the relative phase between the partial waves can be predicted from theory or extracted from experiment. The results are applicable to our recent experiment in 87Rb, which has a d-wave shape resonance.
214 - M. Mark , F. Ferlaino , S. Knoop 2007
We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.
237 - J. Fuchs , C. Ticknor , P. Dyke 2008
We present measurements of the binding energies of $^6$Li p-wave Feshbach molecules formed in combinations of the (F = 1/2, m_F = +1/2), (1), and (F = 1/2, m_F = -1/2), (2), states. The binding energies scale linearly with magnetic field detuning for all three resonances. The relative molecular magnetic moments are found to be $113 pm 7 mu$K/G, $111 pm 6 mu$K/G and $118 pm 8 mu$K/G for the (1)-(1), (1)-(2) and (2)-(2) resonances, respectively, in good agreement with theoretical predictions. Closed channel amplitudes and the size of the p-wave molecules are obtained theoretically from full closed-coupled calculations.
161 - S. Knoop , M. Mark , F. Ferlaino 2008
We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.
Magnetically tunable Feshbach resonances were employed to associate cold diatomic molecules in a series of experiments involving both atomic Bose as well as two spin component Fermi gases. This review illustrates theoretical concepts of both the part icular nature of the highly excited Feshbach molecules produced and the techniques for their association from unbound atom pairs. Coupled channels theory provides the rigorous formulation of the microscopic physics of Feshbach resonances in cold gases. Concepts of dressed versus bare energy states, universal properties of Feshbach molecules, as well as the classification in terms of entrance- and closed-channel dominated resonances are introduced on the basis of practical two-channel approaches. Their significance is illustrated for several experimental observations, such as binding energies and lifetimes with respect to collisional relaxation. Molecular association and dissociation are discussed in the context of techniques involving linear magnetic field sweeps in cold Bose and Fermi gases as well as pulse sequences leading to Ramsey-type interference fringes. Their descriptions in terms of Landau-Zener, two-level mean field as well as beyond mean field approaches are reviewed in detail, including the associated ranges of validity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا