ﻻ يوجد ملخص باللغة العربية
We have first used the aquesous KMnO4 solutions to de-intercalate and oxideze gamma-phase of Na0.7CoO2 and successfully form the superconductive phase of cobalt oxyhydrate hydrates (Na,K)xCoO2.yH2O with Tc=3.2-4.6K based on the magnetization measurements. The higher molar ratio of KMnO4/Na used to treat Na0.7CoO2 results in more removal of Na+ and leads to a partial or even complete replacement of K+ for Na+. The low molar ratio of KMnO4/Na forms a superconductive phase with the c-axis ca. 19.6 angstrom, whereas the high molar ratio of KMnO4/Na forms a non-superconductive phase with teh c-axis ca. 13.9 angstrom. The superconductive 19.6 angstrom phase is unstable with respect to the ambient air in terms of losing water molecule from the structure; nevertheless, the dehydration/hydration process is reversible when storing the sample in a chamber with sufficient humidity.
We have first succeefully synthesized the sodium cobalt oxyhydrate superconductors using KMnO4 as a de-intercalating and oxidizing agent. It is a novel route to form the superconductive phase of NaxCoO2.yH2O without resorting to the commonly used Br2
This paper has been withdrawn by the author due to a data error in Fig 5.
We synthesized Nax(H3O)zCoO2yH2O samples with various Na/H3O ratios but with the constant Co valence of s = +3.40, and measured their magnetic properties to draw phase diagrams of the system. The superconductivity is very sensitive to the Na/H3O rati
Various samples of sodium cobalt oxyhydrate with relatively large amounts of Na$^{+}$ ions were synthesized by a modified soft-chemical process in which a NaOH aqueous solution was added in the final step of the procedure. From these samples, a super
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1)