ﻻ يوجد ملخص باللغة العربية
We studied the tunneling density of states in YBCO films under strong currents flowing along node directions. The currents were induced by fields of up to 32.4T parallel to the film surface and perpendicular to the $CuO_{2}$ planes. We observed a remarkable change in the tunneling conductance at high fields where the gap-like feature shifts discontinuously from 15meV to a lower bias of 11meV, becoming more pronounced as the field increases. The effect takes place in increasing fields around 9T and the transition back to the initial state occurs around 5T in decreasing fields. We argue that this transition is driven by surface currents induced by the applied magnetic field.
We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied pa
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results.
We probe the short-range pinning properties with the application of microwave currents at very high driving frequencies (47.7 GHz) on YBa$_2$Cu$_3$O$_{7-delta}$ films with and without sub-micrometer BaZrO$_3$ inclusions. We explore the temperature an
Measurements of the nonlinear flux-flow resistivity $rho$ and the critical vortex velocity $rm v^*_phi$ at high voltage bias close to the instability regime predicted by Larkin and Ovchinnikov cite{LO} are reported along the node and antinode directi
As established by scanning tunneling microscopy (STM) cleaved surfaces of the high temperature superconductor YBa$_2$Cu$_2$O$_{7-delta}$ develop charge density wave (CDW) modulations in the one-dimensional (1D) CuO chains. At the same time, no signat