ﻻ يوجد ملخص باللغة العربية
We have studied the electronic structure and charge ordering (Verwey) transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the enhanced probing depth and the use of different surface preparations we are able to distinguish surface and volume effects in the spectra. The pseudogap behavior of the intrinsic spectra and its temperature dependence give evidence for the existence of strongly bound small polarons consistent with both dc and optical conductivity. Together with other recent structural and theoretical results our findings support a picture in which the Verwey transition contains elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb interaction.
Extending the Froehlich polaron problem to a discrete ionic lattice we study a polaronic state with a small radius of the wave function but a large size of the lattice distortion. We calculate the energy dispersion and the effective mass of the polar
By combining {it ab initio} results for the electronic structure and phonon spectrum with the group theory, we establish the origin of the Verwey transition in Fe$_3$O$_4$. Two primary order parameters with $X_3$ and $Delta_5$ symmetries are identifi
The cross over from low to high carrier densities in a many-polaron system is studied in the framework of the one-dimensional spinless Holstein model, using unbiased numerical methods. Combining a novel quantum Monte Carlo approach and exact diagonal
We derive an S=1 spin polaron model which describes the motion of a single hole introduced into the S=1 spin antiferromagnetic ground state of Ca2RuO4. We solve the model using the self-consistent Born approximation and show that its hole spectral fu
The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band