ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat-capacity anomalies at $T_{sc}$ and $T^{*}$ in the ferromagnetic superconductor UGe$_2$

226   0   0.0 ( 0 )
 نشر من قبل Naoyuki Tateiwa
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The heat-capacity and magnetization measurements under high pressure have been carried out in a ferromagnetic superconductor UGe$_2$. Both measurements were done using a same pressure cell in order to obtain both data for one pressure. Contrary to the heat capacity at ambient pressure, an anomaly is found in the heat capacity at the characteristic temperature $T^{*}$ where the magnetization shows an anomalous enhancement under high pressure where the superconductivity appears. This suggests that a thermodynamic phase transition takes place at $T^{*}$ at least under high pressure slightly below $P_{c}^{*}$ where $T^{*}$ becomes zero. The heat-capacity anomaly associated with the superconducting transition is also investigated, where a clear peak of $C/T$ is observed in a narrow pressure region ($Delta P sim 0.1$ GPa) around $P_{c}^{*}$ contrary to the previous results of the resistivity measurement. Present results suggest the importance of the thermodynamic critical point $P_{c}^{*}$ for the appearance of the superconductivity.



قيم البحث

اقرأ أيضاً

79 - S. Raymond , A. Huxley 2003
Inelastic neutron scattering was used to study the low energy magnetic excitations of the ferromagnetic superconductor UGe$_{2}$. The ferromagnetic fluctuations are of Ising nature with a non-conserved magnetization and have an intermediate behavior between localized and itinerant magnetism.
96 - S. Raymond , A. Huxley 2005
We report inelastic neutron scattering measurements of the phonon spectrum of the pressure-induced ferromagnetic superconductor UGe$_{2}$. No changes of the spectrum were found on cooling down to low temperature. The phonon contribution to the specif ic heat was estimated from a fit to our data. The excess specific heat previously noted at around $T_{x} approx$ 30 K is not due to phonons but is well described by the temperature dependence of the magnetic order parameter at the molecular field level.
We performed the DC-magnetization and neutron scattering experiments under pressure {it P} for a pressure-induced superconductor UGe$_2$. We found that the magnetic moment is enhanced at a characteristic temperature {it T}$^{*}$ in the ferromagnetic state, where {it T}$^{*}$ is smaller than a Curie temperature {it T}$_{rm C}$. This enhancement becomes remarkable in the vicinity of {it P}$_{rm C}^{*}$ = 1.20 GPa, where {it T}$^{*}$ becomes 0 K and the superconducting transition temperature {it T}$_{rm SC}$ shows a maximum. The characteristic temperature {it T}$^{*}$, which decreases with increasing pressure, also depends on the magnetic field.
The results of magnetic susceptibility, electrical resistivity ($rho$), heat-capacity (C) and thermopower (S) measurements on CeCuAs2, forming in ZrCuSi2-type tetragonal structure, are reported. Our investigations reveal that Ce is trivalent and ther e is no clear evidence for long range magnetic ordering down to 45 mK. The $rho$ behavior is notable in the sense that (i) the temperature (T)-coefficient of $rho$ is negative in the entire range of measurement (45 mK to 300 K) with large values of $rho$, while S behavior is typical of metallic Kondo lattices, and (ii) $rho$ is proportional to T-0.6 at low temperatures, without any influence on the exponent by the application of a magnetic field, which does not seem to classify this compound into hither-to-known non-Fermi liquid (NFL) systems. In contrast to the logarithmic increase known for NFL systems, C/T measured down to 0.5 K exhibits a fall below 2 K. The observed properties of this compound are unusual among Ce systems.
The field-reentrant (field-reinforced) superconductivity on ferromagnetic superconductors is one of the most interesting topics in unconventional superconductivity. The enhancement of effective mass and the induced ferromagnetic fluctuations play key roles for reentrant superconductivity. However, the associated change of the Fermi surface, which is often observed at (pseudo-) metamagnetic transition, can also be a key ingredient. In order to study the Fermi surface instability, we performed Hall effect measurements in the ferromagnetic superconductor URhGe. The Hall effect of URhGe is well explained by two contributions, namely by the normal Hall effect and by the large anomalous Hall effect due to skew scattering. The large change in the Hall coefficient is observed at low fields between the paramagnetic and ferromagnetic states for H // c-axis (easy-magnetization axis) in the orthorhombic structure, indicating that the Fermi surface is reconstructed in the ferromagnetic state below the Curie temperature (T_Curie=9.5K). At low temperatures (T << T_Curie), when the field is applied along the b-axis, the reentrant superconductivity was observed in both the Hall resistivity and the magnetoresistance below 0.4K. Above 0.4K, a large jump with the first-order nature was detected in the Hall resistivity at a spin-reorientation field H_R ~ 12.5T, demonstrating that the marked change of the Fermi surface occurs between the ferromagnetic state and the polarized state above H_R. The results can be understood by the Lifshitz-type transition, induced by the magnetic field or by the change of the effective magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا