ﻻ يوجد ملخص باللغة العربية
We investigate the effects of dimensional reduction in Bose gases induced by a strong harmonic confinement in the transverse cylindric radial direction. By using a generalized Lieb-Liniger theory, based on a variational treatment of the transverse width of the Bose gas, we analyze the transition from a 3D Bose-Einstein condensate to the 1D Tonks-Girardeau gas. The sound velocity and the frequency of the lowest compressional mode give a clear signature of the regime involved. We study also the case of negative scattering length deriving the phase diagram of the Bose gas (uniform, single soliton, multi soliton and collapsed) in toroidal confinement.
We discuss the zero-temperature hydrodynamics equations of bosonic and fermionic superfluids and their connection with generalized Gross-Pitaevskii and Ginzburg-Landau equations through a single superfluid nonlinear Schrodinger equation.
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensate
We investigate the elementary excitations of charge and spin degrees for the 1D interacting two-component Bose and Fermi gases by means of the discrete Bethe ansatz equations. Analytic results in the limiting cases of strong and weak interactions are
We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove compressibility of the system on the superfluid--insulator critical line and in its
We show that thermalization of the motion of atoms at negative temperature is possible in an optical lattice, for conditions that are feasible in current experiments. We present a method for reversibly inverting the temperature of a trapped gas. More