ﻻ يوجد ملخص باللغة العربية
Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.
The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance p
Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklik
Provided the electrical properties of electro-burnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10nm electrical devices. We examine both theoretically and expe
We report on magnetotransport measurements performed on a large metallic two-dimensional $mathcal{T}_{3}$ network. Superimposed on the conventional Altshuler-Aronov-Spivak (AAS) oscillations of period $h/2e$, we observe clear $h/e$ oscillations in ma
In this paper the interaction of hydrogen molecules with atomic-sized superconducting nanojunctions is studied. It is demonstrated by conductance histogram measurements that the superconductors niobium, tantalum and aluminum show a strong interaction