ﻻ يوجد ملخص باللغة العربية
Neutron scattering measurements on the spin-ice candidate material Ho$_2$Ru$_2$O$_7$ have revealed two magnetic transitions at T $sim$ 95 K and T $sim$ 1.4 K to long-range ordered states involving the Ru and Ho sublattices, respectively. Between these transitions, the Ho$^{3+}$ moments form short-ranged ordered spin clusters. The internal field provided by the ordered S=1 Ru$^{4+}$ moments disrupts the fragile spin-ice state and drives the Ho$^{3+}$ moments to order. We have directly measured a slight shift in the Ho$^{3+}$ crystal field levels at 95 K from the Ru ordering.
The elementary excitations of the spin-ice materials Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$ in zero field can be described as independent magnetic monopoles. We investigate the influence of these exotic excitations on the heat transport by measuring
When degenerate states are separated by large energy barriers, the approach to thermal equilibrium can be slow enough that physical properties are defined by the thermalization process rather than the equilibrium. The exploration of thermalization pu
We present an extensive study on the effect of substrate orientation, strain, stoichiometry and defects on spin ice physics in Ho$_2$Ti$_2$O$_7$ thin films grown onto yttria-stabilized-zirconia substrates. We find that growth in different orientation
The single ion physics of Ho$_2$Ti$_2$O$_7$ is well-understood to produce strong Ising anisotropy, which is an essential ingredient to its low-temperature spin ice state. We present inelastic neutron scattering measurements on Ho$_2$Ti$_2$O$_7$ that
The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, hosting many emergent properties, e.g. spin ice and monopole-type excitation. Recently, the magnetic monopole excitation of spin ice systems was predicted t