ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-field diffusion magneto-thermopower of a high mobility two-dimensional electron gas

107   0   0.0 ( 0 )
 نشر من قبل Dr. H. Buhmann
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Maximov




اسأل ChatGPT حول البحث

The low magnetic field diffusion thermopower of a high mobility GaAs-heterostructure has been measured directly on an electrostatically defined micron-scale Hall-bar structure at low temperature (T = 1.6 K) in the low magnetic field regime (B < 1.2 T) where delocalized quantum Hall states do not influence the measurements. The sample design allowed the determination of the field dependence of the thermopower both parallel and perpendicular to the temperature gradient, denoted respectively by Sxx (longitudinal thermopower) and Syx (Nernst-Ettinghausen coefficient). The experimental data show clear oscillations in Sxx and Syx due to the formation of Landau levels for 0.3 T < B < 1.2 T and reveal that Syx is approximately 120 times larger than Sxx at a magnetic field of 1 T, which agrees well with the theoretical prediction.



قيم البحث

اقرأ أيضاً

In a high mobility two-dimensional electron gas (2DEG) in a GaAs/AlGaAs quantum well we observe a strong magnetoresistance. In lowering the electron density the magnetoresistance gets more pronounced and reaches values of more than 300%. We observe t hat the huge magnetoresistance vanishes for increasing the temperature. An additional density dependent factor is introduced to be able to fit the parabolic magnetoresistance to the electron-electron interaction correction.
320 - X. Wang , D. J. Hilton , L. Ren 2007
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility ($>{10}^{6} mathrm{cm^{2} V^{-1} s^{-1}}$) sample without being affected by the saturation effect.
81 - C. L. Yang 2002
Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished th rough a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in GaAs-AlGa$_{0.3}$As$_{0.7}$ heterostructures, and can be well explained by the Zener mechanism.
160 - Z. Q. Yuan , C. L. Yang , R. R. Du 2006
The microwave (MW) photoresistance has been measured on a high-mobility two-dimensional electron gas patterned with a shallow triangular antidot lattice, where both the MW-induced resistance oscillations (MIRO) and magnetoplasmon (MP) resonance are o bserved superposing on sharp commensurate geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are decoupled from each other in these experiments.
Introduction of a Josephson field effect transistor (JoFET) concept sparked active research on proximity effects in semiconductors. Induced superconductivity and electrostatic control of critical current has been demonstrated in two-dimensional gases in InAs, graphene and topological insulators, and in one-dimensional systems including quantum spin Hall edges. Recently, interest in superconductor-semiconductor interfaces was renewed by the search for Majorana fermions, which were predicted to reside at the interface. More exotic non-Abelian excitations, such as parafermions (fractional Majorana fermions) or Fibonacci fermions may be formed when fractional quantum Hall edge states interface with superconductivity. In this paper we develop transparent superconducting contacts to high mobility two-dimensional electron gas (2DEG) in GaAs and demonstrate induced superconductivity across several microns. Supercurrent in a ballistic junction has been observed across 0.6 $mu$m of 2DEG, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields ($>16$ Tesla) in NbN contacts enables investigation of a long-sought regime of an interplay between superconductivity and strongly correlated states in a 2DEG at high magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا