ترغب بنشر مسار تعليمي؟ اضغط هنا

Neighborhood models of minority opinion spreading

130   0   0.0 ( 0 )
 نشر من قبل Claudio Tessone
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of finite size population in Galams model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N, the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galams model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.



قيم البحث

اقرأ أيضاً

Given a Banach space X, denote by SP_{w}(X) the set of equivalence classes of spreading models of X generated by normalized weakly null sequences in X. It is known that SP_{w}(X) is a semilattice, i.e., it is a partially ordered set in which every pa ir of elements has a least upper bound. We show that every countable semilattice that does not contain an infinite increasing sequence is order isomorphic to SP_{w}(X) for some separable Banach space X.
We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing spontaneous symmetry breaking transition.
Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]
This work deals with the influence of the neighborhood in simple rock-paper-scissors models of biodiversity. We consider the case of three distinct species which evolve under the standard rules of mobility, reproduction and competition. The rule of c ompetition follows the guidance of the rock-paper-scissors game, with the prey being annihilated, leaving an empty site in accordance with the May-Leonard proposal for the predator and prey competition. We use the von Neumann neighborhood, but we consider mobility under the presence of the first, second and third neighbors in three distinct environments, one with equal probability and the others with probability following the power law and exponential profiles. The results are different, but they all show that increasing the neighbourhood increases the characteristic length of the system in an important way. We have studied other possibilities, in particular the case where one modifies the manner a specific species competes, unveiling the interesting result in which the strongest individuals may constitute the less abundant population.
87 - F. K. Chow , H. F. Chau 2001
Minority game is a model of heterogeneous players who think inductively. In this game, each player chooses one out of two alternatives every turn and those who end up in the minority side wins. It is instructive to extend the minority game by allowin g players to choose one out of many alternatives. Nevertheless, such an extension is not straight-forward due to the difficulties in finding a set of reasonable, unbiased and computationally feasible strategies. Here, we propose a variation of the minority game where every player has more than two options. Results of numerical simulations agree with the expectation that our multiple choices minority game exhibits similar behavior as the original two-choice minority game.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا