ﻻ يوجد ملخص باللغة العربية
We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold ^6Li gas at magnetic fields above a Feshbach resonance, where no stable ^6Li_2 molecules would exist in vacuum. We accurately determined the position of the resonance to be 822+-3 G. Molecular Bose-Einstein condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close distances into bound molecules. Condensate fractions as high as 80% were obtained. The large condensate fractions are interpreted in terms of pre-existing molecules which are quasi-stable even above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.
We studied the magnetic field dependence of the inelastic decay of an ultracold, optically trapped 6-Li gas of different spin compositions. The spin mixture of the two lowest hyperfine states showed two decay resonances at 550 G and 680 G due to two-
Within the framework of the variational approach the ground state is studied in a gas of Fermi atoms near the Feshbach resonance at negative scattering length. The structure of the originating superfluid state is formed by two coherently bound subsys
Feshbach resonances in lithium-6 were experimentally studied and theoretically analyzed. In addition to two previously known s-wave resonances, we found three p-wave resonances. Four of these resonances are narrow and yield a precise value of the sin
We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the lifetime of a 3D superfluid, in particu
Based on the analytic model of Feshbach resonances in harmonic traps described in Phys. Rev. A 83, 030701 (2011) a Bose-Hubbard model is introduced that provides an accurate description of two atoms in an optical lattice at a Feshbach resonance with