ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced Spin-Currents in Alkali-Films

121   0   0.0 ( 0 )
 نشر من قبل Gerd Bergmann
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In sandwiches of FeK and FeCs the conduction electrons in the alkali metals have a large mean free path. The experiments suggest that the specular reflection for spin up and down electrons is different at the interface yielding a spin current in the alkali film. The spin current is detected by the anomalous Hall effect of Pb surface impurities.



قيم البحث

اقرأ أيضاً

Magnetic transition metal dichalcogenide (TMD) films have recently emerged as promising candidates to host novel magnetic phases relevant to next-generation spintronic devices. However, systematic control of the magnetization orientation, or anisotro py, and its thermal stability, characterized by Curie temperature (Tc) remains to be achieved in such films. Here we present self-intercalated epitaxial Cr1+{delta}Te2 films as a platform for achieving systematic/smooth magnetic tailoring in TMD films. Using a molecular beam epitaxy (MBE) based technique, we have realized epitaxial Cr1+{delta}Te2 films with smoothly tunable over a wide range (0.33-0.82), while maintaining NiAs-type crystal structure. With increasing {delta}, we found monotonic enhancement of Tc from 160 to 350 K, and the rotation of magnetic anisotropy from out-of-plane to in-plane easy axis configuration for fixed film thickness. Contributions from conventional dipolar and orbital moment terms are insufficient to explain the observed evolution of magnetic behavior with {delta}. Instead, ab initio calculations suggest that the emergence of antiferromagnetic interactions with {delta}, and its interplay with conventional ferromagnetism, may play a key role in the observed trends. To our knowledge, this constitutes the first demonstration of tunable Tc and magnetic anisotropy across room temperature in TMD films, and paves the way for engineering novel magnetic phases for spintronic applications.
We present results on the longitudinal spin Seebeck effect (LSSE) shown by semiconducting ferrimagnetic NiFe2O4/Pt films from room temperature down to 50K base temperature. To the best of our knowledge, this is the first observation of spin caloric e ffect in NiFe2O4 thin films. The temperature dependence of the conductivity has been studied in parallel to obtain information about the origin of the electric potentials detected at the Pt coverage of the ferrimagnet in order to distinguish the LSSE from the anomalous Nernst effect. Furthermore, the dependence of the LSSE on temperature gradients as well as the influence of an external magnetic field direction is investigated.
The existence of spin-currents in absence of any driving external fields is commonly considered an exotic phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that equilibrium spin currents are a rath er general property of materials with non negligible spin-orbit coupling (SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence of global equilibrium spin currents, which are net bulk spin-currents along specific crystallographic directions of materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen as the analogous of the color degree of freedom and equilibrium spin currents can then be identified with diamagnetic color currents appearing as the response to an effective non-Abelian magnetic field generated by SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but they should nonetheless be carefully taken into account when computing transport spin currents. We provide quantitative estimates of equilibrium spin currents for several systems, specifically metallic surfaces presenting Rashba-like surface states, nitride semiconducting nanostructures and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out the limitations of model approaches showing that first-principles calculations are needed to obtain reliable predictions. We therefore use Density Functional Theory computing the so-called bond currents, which represent a powerful tool to understand the relation between equilibrium currents, electronic structure and crystal point group.
Strong Rashba effects at surfaces and interfaces have attracted great attention for basic scientific exploration and practical applications. Here, the first-principles investigation shows that giant and tunable Rashba effects can be achieved in KTaO$ _3$ (KTO) ultrathin films by applying biaxial stress. When increasing the in-plane compressive strain nearly to -5%, the Rashba spin splitting energy reaches $E_{R}=140$ meV, approximately corresponding to the Rashba coupling constant $alpha_{R}=1.3$ eV {AA}. We investigate its strain-dependent crystal structures, energy bands, and related properties, and thereby elucidate the mechanism for the giant Rashba effects. Furthermore, we show that giant Rashba spin splitting can be kept in the presence of SrTiO$_3$ capping layer and/or Si substrate, and strong circular photogalvanic effect can be achieved to generate spin-polarized currents in the KTO thin films or related heterostructures, which are promising for future spintronic and optoelectronic applications.
Applying coherent X-rays by the method of atomic-scale X-ray Photon Correlation Spectroscopy results in beam-induced dynamics in a number of oxide glasses. Here these studies are extended to rubidium and caesium borates with varying alkali contents. While no cumulative beam damage is observed, the observed rate of structural rearrangements shows a linear relation to the dose rate. In agreement with the increasing glass transition temperature, the rate of dynamics at given dose rate decreases with increasing alkali content, while the shape of the decay of correlations becomes progressively stretched. This behavior is explained in terms of faster dynamics of the alkali positions compared to the borate network. Finally, the q-dependent behavior of the correlation decay rate implies the observed dynamics to proceed via small-scale atomic displacements subject to de Gennes narrowing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا