ﻻ يوجد ملخص باللغة العربية
We present a generalization of the recently proposed variational cluster perturbation theory to extended Hubbard models at half filling with repulsive nearest neighbor interaction. The method takes into account short-range correlations correctly by the exact diagonalisation of clusters of finite size, whereas long-range order beyond the size of the clusters is treated on a mean-field level. For one dimension, we show that quantum Monte Carlo and density-matrix renormalization-group results can be reproduced with very good accuracy. Moreover we apply the method to the two-dimensional extended Hubbard model on a square lattice. In contrast to the one-dimensional case, a first order phase transition between spin density wave phase and charge density wave phase is found as function of the nearest-neighbor interaction at onsite interactions U>=3t. The single-particle spectral function is calculated for both the one-dimensional and the two-dimensional system.
The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of
Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA gra
We study the correlation-induced deformation of Fermi surfaces by means of a new diagrammatic method which allows for the analytical evaluation of Gutzwiller wave functions in finite dimensions. In agreement with renormalization-group results we find
We applied the Recurrent Variational Approach to the two-leg Hubbard ladder. At half-filling, our variational Ansatz was a generalization of the resonating valence bond state. At finite doping, hole pairs were allowed to move in the resonating valenc
The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orde