ﻻ يوجد ملخص باللغة العربية
Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube radii and dielectric environments. We find that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength.
We calculate the radiative lifetime and energy bandstructure of excitons in semiconducting carbon nanotubes, within a tight-binding approach. In the limit of rapid interband thermalization, the radiative decay rate is maximized at intermediate temper
We present direct experimental observation of exciton-phonon bound states in the photoluminescence excitation spectra of isolated single walled carbon nanotubes in aqueous suspension. The photoluminescence excitation spectra from several distinct sin
Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields ($>$ 55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the
We use ab initio total-energy calculations to predict the existence of polarons in semiconducting carbon nanotubes (CNTs). We find that the CNTs band edge energies vary linearly and the elastic energy increases quadratically with both radial and with
We report the observation of an intriguing behaviour in the transport properties of nanodevices operating in a regime between the Fabry-Perot and the Kondo limits. Using ultra-high quality nanotube devices, we study how the conductance oscillates whe