ﻻ يوجد ملخص باللغة العربية
We present the first inelastic neutron scattering study of the short wavelength dynamics in a phospholipid bilayer. We show that inelastic neutron scattering using a triple-axis spectrometer at the high flux reactor of the ILL yields the necessary resolution and signal to determine the dynamics of model membranes. The results can quantitatively be compared to recent Molecular Dynamics simulations. Reflectivity, in-plane correlations and the corresponding dynamics can be measured simultaneously to gain a maximum amount of information. With this method, dispersion relations can be measured with a high energy resolution. Structure and dynamics in phospholipid bilayers, and the relation between them, can be studied on a molecular length scale.
We have studied the collective short wavelength dynamics in deuterated DMPC bilayers by inelastic neutron scattering. The corresponding dispersion relation $hbaromega$(Q) is presented for the gel and fluid phase of this model system. The temperature
The nanoscale fluctuation dynamics of semi dilute high molecular weight polymer solutions of Polyethylenoxide (PEO) in D2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow
Employing wide-angle neutron spin echo spectroscopy, we measured the Q-dependent coherent intermediate scattering function of the prototypical ionic glass former Ca0.4K0.6(NO3)1.4, in the equilibrium and supercooled liquid states beyond the hydrodyna
We employ 100 ns molecular dynamics simulations to study the influence of cholesterol on structural and dynamic properties of dipalmitoylphosphatidylcholine (DPPC) bilayers in the fluid phase. The effects of the cholesterol content on the bilayer str
We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alco