ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal charge transport of the Mn oxides in the high temperature limit

60   0   0.0 ( 0 )
 نشر من قبل Ichiro Terasaki
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have found that various Mn oxides have the universal resistivity and thermopower in the high temperature limit. The resistivities and thermopowers of all the samples go toward constant values of 7$pm$1 m$Omega$cm and $-79pm$3 $mu$V/K, which are independent of carrier density and crystal structures. We propose that the electric conduction occurs in a highly localized way in the high temperature limit, where the exchange of entropy and charge occurs in the neighboring Mn$^{3+}$ and Mn$^{4+}$ ions.



قيم البحث

اقرأ أيضاً

We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
Room-temperature ferromagnetism has been observed in the nanoparticles (7 - 30 nm dia) of nonmagnetic oxides such as CeO2, Al2O3, ZnO, In2O3 and SnO2. The saturated magnetic moments in CeO_2 and Al_2O_3 nanoparticles are comparable to those observed in transition metal doped wide band semiconducting oxides. The other oxide nanoparticles show somewhat lower values of magnetization but with a clear hysteretic behavior. Conversely, the bulk samples obtained by sintering the nanoparticles at high temperatures in air or oxygen became diamagnetic. As there were no magnetic impurities present, we assume that the origin of ferromagnetism may be due to the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of nanoparticles. We suggest that ferromagnetism may be a universal characteristic of nanopartilces of metal oxides
69 - H. P. Wang , Wei Luo , 2017
Quantum anomalous Hall (QAH) insulator is a topological phase which exhibits chiral edge states in the absence of magnetic field. The celebrated Haldane model is the first example of QAH effect, but difficult to realize. Here, we predict the two-dime nsional single-atomic-layer V2O3 with a honeycomb-Kagome structure is a QAH insulator with a large band gap (large than 0.1 eV) and a high ferromagnetic Curie temperature (about 900 K). Combining the first-principle calculations with the effective Hamiltonian analysis, we find that the spin-majority dxy and dyz orbitals of V atoms on the honeycomb lattice form a massless Dirac cone near the Fermi level which becomes massive when the on-site spin-orbit coupling is included. Interestingly, we find that the large band gap is caused by a cooperative effect of electron correlation and spin-orbit coupling. Both first-principle calculations and the effective Hamiltonian analysis confirm that 2D V2O3 has a non-zero Chern number (i.e., one). Our work paves a new direction towards realizing the QAH effect at room temperature.
Quantum corrections to transport through a chaotic ballistic cavity are known to be universal. The universality not only applies to the magnitude of quantum corrections, but also to their dependence on external parameters, such as the Fermi energy or an applied magnetic field. Here we consider such parameter dependence of quantum transport in a ballistic chaotic cavity in the semiclassical limit obtained by sending Plancks constant to zero without changing the classical dynamics of the open cavity. In this limit quantum corrections are shown to have a universal parametric dependence which is not described by random matrix theory.
Modulation of the grain boundary properties in thermoelectric materials that have thermally activated electrical conductivity is crucial in order to achieve high performance at low temperatures. In this work, we show directly that the modulation of t he potential barrier at the grain boundaries in perovskite SrTiO3 changes the low-temperature dependency of the bulk materials electrical conductivity. By sintering samples in a reducing environment of increasing strength, we produced La0.08Sr0.9TiO3 (LSTO) ceramics that gradually change their electrical conductivity behavior from thermally activated to single-crystal-like, with only minor variations in the Seebeck coefficient. Imaging of the surface potential by Kelvin probe force microscopy found lower potential barriers at the grain boundaries in the LSTO samples that had been processed in the more reducing environments. A theoretical model using the band offset at the grain boundary to represent the potential barrier agreed well with the measured grain boundary potential dependency of conductivity. The present work showed an order of magnitude enhancement in electrical conductivity (from 85 to 1287 S cm-1) and power factor (from 143 to 1745 {mu}W m-1 K-2) at 330 K by this modulation of charge transport at grain boundaries. This significant reduction in the impact of grain boundaries on charge transport in SrTiO3 provides an opportunity to achieve the ultimate phonon glass electron crystal by appropriate experimental design and processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا