The spin dynamics of a doped 2-leg spin ladder is investigated by numerical techniques. We show that a hole pair-magnon boundstate evolves at finite hole doping into a sharp magnetic excitation below the two-particle continuum. This is supported by a field theory argument based on a SO(6)-symmetric ladder. Similarities and differences with the resonant mode of the high-T$_c$ cuprates are discussed.
We consider the effects of Umklapp processes in doped two-leg fermionic ladders. These may emerge either at special band fillings or as a result of the presence of external periodic potentials. We show that such Umklapp processes can lead to profound
changes of physical properties and in particular stabilize pair-density wave phases.
The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important model system for the high-$T_c$ superconductors based on cuprates. Using the technique of self-similar continuous unitary transformations we derive effective Hamiltonians for th
e charge motion in these ladders. The key advantage of this technique is that it provides effective models explicitly in the thermodynamic limit. A real space restriction of the generator of the transformation allows us to explore the experimentally relevant parameter space. From the effective Hamiltonians we calculate the dispersions for single holes. Further calculations will enable the calculation of the interaction of two holes so that a handle of Cooper pair formation is within reach.
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmission and the optical conductivity sigma(omega) of undoped La_x Ca_14-x Cu_24 O_41 for x=4, 5,
and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2 <= J_parallel/J_perpendicular <= 1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.
In previous studies, we proposed a scaling ansatz for electron-electron interactions under renormalization group transformation. With the inclusion of phonon-mediated interactions, we show that the scaling ansatz, characterized by the divergent logar
ithmic length $l_d$ and a set of renormalization-group exponents, also works rather well. The superconducting phases in a doped two-leg ladder are studied and classified by these renormalization-group exponents as demonstration. Finally, non-trivial constraints among the exponents are derived and explained.
We study the magnetic orbital effect of a doped two-leg ladder in the presence of a magnetic field component perpendicular to the ladder plane. Combining both low-energy approach (bosonization) and numerical simulations (density-matrix renormalizatio
n group) on the strong coupling limit (t-J model), a rich phase diagram is established as a function of hole doping and magnetic flux. Above a critical flux, the spin gap is destroyed and a Luttinger liquid phase is stabilized. Above a second critical flux, a reentrance of the spin gap at high magnetic flux is found. Interestingly, the phase transitions are associated with a change of sign of the orbital susceptibility. Focusing on the small magnetic field regime, the spin-gapped superconducting phase is robust but immediately acquires algebraic transverse (i.e. along rungs) current correlations which are commensurate with the 4k_F density correlations. In addition, we have computed the zero-field orbital susceptibility for a large range of doping and interactions ratio J/t : we found strong anomalies at low J/t only in the vicinity of the commensurate fillings corresponding to delta = 1/4 and 1/2. Furthermore, the behavior of the orbital susceptibility reveals that the nature of these insulating phases is different: while for delta = 1/4 a 4k_F charge density wave is confirmed, the delta = 1/2 phase is shown to be a bond order wave.