ترغب بنشر مسار تعليمي؟ اضغط هنا

Stress-Dependent Magnetoimpedance in Co-Based Amorphous Wires and Application to Tunable Microwave Composites

72   0   0.0 ( 0 )
 نشر من قبل Dmitriy Makhnovskiy Dr
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A remarkably strong dependence of magnetoimpedance (MI) on tensile stress has been observed in the microwave frequency range for thin CoMnSiB glass-coated microwires exposed to a special thermal treatment. The MI ratio runs into more than 100% at 0.5-1.5 GHz when the tensile stress of 600 MPa is applied to the wire. It was demonstrated that a large MI change at such high frequencies is related predominantly with the dc magnetization orientation. A host of such microwires incorporated into a dielectric matrix may constitute a new sensing medium that is characterized by the stress-dependent effective permittivity. Such medium can be used for the microwave visualization of the stress distribution inside of a composite structure or on its surface.



قيم البحث

اقرأ أيضاً

58 - L.V. Panina , S.I. Sandacci , 2004
The effect of tensile stress on magnetoimpedance (MI) in CoMnSiB amorphous wires at microwave frequencies (0.5-3 GHz) is investigated both experimentally and theoretically. In the presence of the dc bias magnetic field of the order of the anisotropy field, the impedance shows very large and sensitive change when the wire is subjected to a tensile stress: 100% and 60% per 180 MPa for frequencies 500 MHz and 2.5 GHz, respectively. It is demonstrated that this behavior owes mainly to the directional change in the equilibrium magnetization caused by the applied stress and field, which agrees well with the theoretical results for the surface impedance. This stress effect on MI is proposed to use for creating microwave stress-tunable composite materials containing short magnetic wires. The analysis of the dielectric response from such materials shows that depending on the stress level in the material, the dispersion of the effective permittivity can be of a resonant or relaxation type with a considerable change in its values (up to 100% at 600 MPa). This media can be used for structural stress monitoring by microwave contrast imaging.
A study of magnetic hysteresis and Giant magnetoimpedance (GMI) in amorphous glass covered Co-Si-B and Co-Mn-Si-B wires is presented. The wires, about 10 microns in diameter, were obtained by glass-coated melt spinning technique. Samples with positiv e magnetostriction (MS) have a rectangular bistable hysteresis loop. A smooth hysteresis loop is observed for wires with nearly zero MS. When MS is negative, almost no hysteresis is observed. The GMI was measured in the frequency range between 20 Hz and 30 MHz. The shapes of the impedance versus field curves are qualitatively similar to each other for both positive and zero MS samples. Impedance is maximum at zero field, and decreases sharply in the range 10-20 Oe. For the negative MS wires, when the driving current is small, the impedance is maximum at a finite external field. The position of the maximum approaches zero with increasing current. The contributions of the moment rotation and domain wall motion in the three cases are discussed.
341 - A. Uddin , F.X. Qin , D. Estevez 2019
Traditional approaches to realize microwave tunability in microwire polymer composites which mainly rely on topological factors, magnetic field/stress stimuli, and hybridization prove to be burdensome and restricted to rather narrow band frequencies. This work presents a novel yet facile strategy based on a single component tunable medium to program the transmission response over wide frequency bands. To this end, we demonstrated that structural modification of one type of microwire through suitable current annealing and arrangement of the annealed wires in multiple combinations were sufficient to distinctly red-shift the transmission dip frequency of the composites. Such one wire control-strategy endorsed a programmable multivariable system grounded on the variations in both the overall array conductivity or effectiv area determined by the wires arrangement and the relaxation time dictated by the annealing degree of microwires. These results can be used to prescribe transmission frequency bands of desired features via diverse microwire arrays and microwave performance from a single component to a composite system design.
We have investigated the microwave properties of epoxy-based composites containing melt-extracted Co69.25Fe4. 25B13.5-xSi13Nbx (x=0, 1, 3) microwires of various length annealed using a so-called combined current-modulation annealing (CCMA) technique. The observation of a double-peak feature in the permittivity spectra is believed due to the coexistence of the amorphous phase and a small amount of nanocrystallites on the wires with a high Nb content. CCMA was found to be favorable for a better-defined circular anisotropy of microwires and had suppressed the highfrequency peak due to residual stress relief for the composite with 25 mm long wires. Neither the shift of resonance peak nor the characteristic double peak feature was detected for composites containing as-cast 15 or 35 mm long microwires.
307 - Matthieu Wyart 2008
Glasses have a large excess of low-frequency vibrational modes in comparison with continuous elastic body, the so-called Boson Peak, which appears to correlate with several crucial properties of glasses, such as transport or fragility. I review recen t results showing that the Boson Peak is a necessary consequence of the weak connectivity of the solid. I explain why in assemblies repulsive spheres the boson peak shifts up to zero frequency as the pressure is lowered toward the jamming threshold, and derive the corresponding exponent. I show how these ideas capture the main low-frequency features of the vibrational spectrum of amorphous silica. These results extend arguments of Phillips on the presence of floppy modes in under-constrained covalent networks to glasses where the covalent network is rigid, or when interactions are purely radial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا