ﻻ يوجد ملخص باللغة العربية
The rotational dynamics of CO single molecules solvated in small He clusters (CO@He_N) has been studied using Reptation Quantum Monte Carlo for cluster sizes up to N=30. Our results are in good agreement with the roto-vibrational features of the infrared spectrum recently determined for this system, and provide a deep insight into the relation between the structure of the cluster and its dynamics. Simulations for large N also provide a prediction of the effective moment of inertia of CO in the He nano-droplet regime, which has not been measured so far.
We report ground state energies and structural properties for small helium clusters (4He) containing an H- impurity computed by means of variational and diffusion Monte Carlo methods. Except for 4He_2H- that has a noticeable contribution from colline
The structural and dynamical properties of OCS molecules solvated in Helium clusters are studied using reptation quantum Monte Carlo, for cluster sizes n=3-20 He atoms. Computer simulations allow us to establish a relation between the rotational spec
We have investigated the stability limits of small spin-polarized clusters consisting of up to ten spin-polarized tritium T$downarrow$ atoms and the mixtures of T$downarrow$ with spin-polarized deuterium D$downarrow$ and hydrogen H$downarrow$ atoms.
We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a $^4$He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300 showing a monotonous i
This work expands recent investigations in the field of spin-polarized tritium (T$downarrow$) clusters . We report the results for the ground state energy and structural properties of large T$downarrow$ cl usters consisting of up to 320 atoms. All ca