ﻻ يوجد ملخص باللغة العربية
Pairs of trapped atoms can be associated to make a diatomic molecule using a time dependent magnetic field to ramp the energy of a scattering resonance state from above to below the scattering threshold. A relatively simple model, parameterized in terms of the background scattering length and resonance width and magnetic moment, can be used to predict conversion probabilities from atoms to molecules. The model and its Landau-Zener interpretation are described and illustrated by specific calculations for $^{23}$Na, $^{87}$Rb, and $^{133}$Cs resonances. The model can be readily adapted to Bose-Einstein condensates. Comparison with full many-body calculations for the condensate case show that the model is very useful for making simple estimates of molecule conversion efficiencies.
Magnetically tunable Feshbach resonances were employed to associate cold diatomic molecules in a series of experiments involving both atomic Bose as well as two spin component Fermi gases. This review illustrates theoretical concepts of both the part
We observe magnetically tuned collision resonances for ultracold Cs2 molecules stored in a CO2-laser trap. By magnetically levitating the molecules against gravity, we precisely measure their magnetic moment. We find an avoided level crossing which a
Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This Review broadly covers the phenomen
Fast sweep projection onto Feshbach molecules has been widely used as a probe of fermionic condensates. By determining the exact dynamics of a pair of atoms in time varying magnetic fields, we calculate the number of condensed and noncondensed molecu
We have observed 28 heteronuclear Feshbach resonances in 10 spin combinations of the hyperfine ground states of a 40K 87Rb mixture. The measurements were performed by observing the loss rates from an atomic mixture at magnetic fields between 0 and 70