ﻻ يوجد ملخص باللغة العربية
We present a comparison between accurate textit{ab initio} calculations and a high-quality experimental data set (1986-2002) of electric-field gradients and magnetic hyperfine fields of Cd at different sites on Ni, Cu, Pd and Ag surfaces. Experiments found a systematic rule to assign surface sites on (100) and (111) surfaces based on the main component of the electric-field gradient, a rule that does not work for (110) surfaces. Our calculations show that this particular rule is a manifestation of a more general underlying systematic behavior. When looked upon from this point of view, (100), (111) emph{and} (110) surfaces behave in precisely the same way. The experimentally observed parabolic coordination number dependence of the Cd magnetic hyperfine field at Ni surfaces is verified as a general trend, but we demonstrate that individual cases can significantly deviate from it. It is shown that the hyperfine fields of other 5sp impurities at Ni surfaces have their own, typical coordination number dependence. A microscopic explanation for the different dependencies is given in terms of the details of the s-DOS near the Fermi level.
We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of
The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion
We use first-principles methods to investigate the adsorption of Cu, Pb, Ag, and Mg onto a H-terminated Si surface. We show that Cu and Pb can adsorb strongly while Ag and Mg are fairly inert. In addition, two types of adsorption states are seen to e
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property wh
A new value for the hyperfine magnetic field of copper impurities in iron is obtained by combining resonance frequencies from experiments involving {beta}-NMR on oriented nuclei on 59-Cu, 69-Cu, and 71-Cu with magnetic moment values from collinear la