ﻻ يوجد ملخص باللغة العربية
We investigated the local electronic density of states in superconductor-normal metal (Nb-Au) bilayers using a very low temperature (60 mK) STM. High resolution tunneling spectra measured on the normal metal (Au) surface show a clear proximity effect with an energy gap of reduced amplitude compared to the bulk superconductor (Nb) gap. Within this mini-gap, the density of states does not reach zero and shows clear sub-gap features. We show that the experimental spectra cannot be described with the well-established Usadel equations from the quasi-classical theory.
We have tuned in situ the proximity effect in a single graphene layer coupled to two Pt/Ta superconducting electrodes. An annealing current through the device changed the transmission coefficient of the electrode/graphene interface, increasing the pr
We study a two-terminal graphene Josephson junction with contacts shaped to form a narrow constriction, less than 100nm in length. The contacts are made from type II superconducting contacts and able to withstand magnetic fields high enough to reach
The usually negligibly small thermoelectric effects in superconducting heterostructures can be boosted dramatically due to the simultaneous effect of spin splitting and spin filtering. Building on an idea of our earlier work [Phys. Rev. Lett. $textbf
We report on sub-gap transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and ch
We investigate charge transport through the junction between a niobium superconductor and the edge of a two-dimensional electron-hole bilayer, realized in an InAs/GaSb double quantum well. For the transparent interface with a superconductor, we demon