ﻻ يوجد ملخص باللغة العربية
Recently, Zhang et al. (Phys. Rev. Lett. 91, 157404 (2003)) have demonstrated that an amphoteric refraction, i. e. both positive and negative refraction, may prevail at the interface of two uniaxial anisotropic crystals when their optical axes are in different directions. The authors subsequently made a correspondence between such a refraction with the negative refraction expected for Left Handed Materials (LHMs). Here we comment that the amphoteric refraction can be observed even with one uniaxial crystal, and the refraction is not related to the negative refraction expected for the much debated LHM. Rather, the phenomenon is a natural result of anisotropic media.
In this communication we refute a criticism concerning results of our work [3] that was presented in references [1] and [2].
In [J. T. Matta et al., Phys. Rev. Lett. 114, 082501 (2015)] a transverse wobbling band was reported in $^{135}$Pr. The critical experimental proof for this assignment is the E2 dominated linking transitions between the wobbling and normal bands, whi
In our Letter (Phys. Rev. Lett. vol. 125, 013903 (2020)), we reported topological vortex lasers based on spin-momentum-locked edge modes. We observed that the near field spin and orbital angular momentum has a one-to-one far-field radiation correspon
We present a comment on Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing, Phys. Rev. Lett. vol. 125, 013903 (2020)(hereafter the Letter).In the Letter, Yang et al. reported on an elegant topological vortex laser and proposed that the near
The RENO experiment recently reported the disappearance of reactor electron antineutrinos consistent with neutrino oscillations, with a significance of 4.9 standard deviations. The published ratio of observed to expected number of antineutrinos in th