ﻻ يوجد ملخص باللغة العربية
Using the simplest possible ingredients of a rupture model with thermal fluctuations, we provide an analytical theory of three ubiquitous empirical observations obtained in creep (constant applied stress) experiments: the initial Andrade-like and Omori-like $1/t$ decay of the rate of deformation and of fiber ruptures and the $1/(t_c-t)$ critical time-to-failure behavior of acoustic emissions just prior to the macroscopic rupture. The lifetime of the material is controlled by a thermally activated Arrhenius nucleation process, describing the cross-over between these two regimes. Our results give further credit to the idea proposed by Ciliberto et al. that the tiny thermal fluctuations may actually play an essential role in macroscopic deformation and rupture processes at room temperature. We discover a new re-entrant effect of the lifetime as a function of quenched disorder amplitude.
We present a general prediction scheme of failure times based on updating continuously with time the probability for failure of the global system, conditioned on the information revealed on the pre-existing idiosyncratic realization of the system by
Thermal fluctuations of different origin in the substrate and in the coating of optical mirrors produce phase noise in the reflected wave. This noise determines the ultimate stabilization capability of high-Q cavities used as a reference system. In p
The damage and fracture of materials are technologically of enormous interest due to their economic and human cost. They cover a wide range of phenomena like e.g. cracking of glass, aging of concrete, the failure of fiber networks in the formation of
We use a symmetry-motivated approach to analyse neutron pair distribution function data to investigate the mechanism of negative thermal expansion (NTE) in ReO$_3$. This analysis shows that the local structure of ReO$_3$ is dominated by an in-phase o
We aim to illuminate how the microscopic properties of a metal surface map to its electric-field noise characteristics. In our system, prolonged heat treatments of a metal film can induce a rise in the magnitude of the electric-field noise generated