ﻻ يوجد ملخص باللغة العربية
We introduce a 2-layer network model for the study of the immunization dynamics in epidemics. Spreading of an epidemic is modeled as an excitatory process in a small-world network (body layer) while immunization by prevention for the disease as a dynamic process in a scale-free network (head layer). It is shown that prevention indeed turns periodic rages of an epidemic into small fluctuation. The study also reveals that, in a certain situation, prevention actually plays an adverse role and helps the disease survive. We argue that the presence of two different characteristic time scales contributes to the immunization dynamics observed.
Chase-Escape is a simple stochastic model that describes a predator-prey interaction. In this model, there are two types of particles, red and blue. Red particles colonize adjacent empty sites at an exponential rate $lambda_{R}$, whereas blue particl
We present numerical simulations of a model of cellulose consisting of long stiff rods, representing cellulose microfibrils, connected by stretchable crosslinks, representing xyloglucan molecules, hydrogen bonded to the microfibrils. Within a broad r
In this work, we study the critical behavior of an epidemic propagation model that considers individuals that can develop drug resistance. In our lattice model, each site can be found in one of four states: empty, healthy, normally infected (not drug
Multi-strain competition on networks is observed in many contexts, including infectious disease ecology, information dissemination or behavioral adaptation to epidemics. Despite a substantial body of research has been developed considering static, ti
We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Ac- tivity Driven (NoPAD) model [Moinet et al. Phys. Rev. Lett., 114 (2015)], a temporal network model incorporating the empirically observed bursty nature of soci