ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry dependent distribution of the supercurrent in YBa2Cu3O7-x films with patterned pinning landscape

90   0   0.0 ( 0 )
 نشر من قبل Enrica Mezzetti
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We created local pinning modulations in YBCO films by means of confined high energy heavy ion irradiation. The high energy of the ions allows us to introduce nanometric size defects with a well defined anisotropy. The dose was chosen in such a way to reduce the local critical current of the irradiated area. We used a quantitative magneto-optical analysis to measure the magnetic field vector and the supercurrent for each point of the whole sample surface. The basic geometry of a rectangular region inside strip-shaped samples was considered in order to investigate in detail the effect of the orientation of planar boundaries with respect to the supercurrent flow direction. Here we present the two complementary orientations of the modulated region, i.e., perpendicular and parallel to the main supercurrent flow. The comparison of the magnetic field and supercurrent distributions shows deep differences between the two configurations. In particular, the enhanced vortex diffusion, observed for the perpendicular case, was not found in the parallel configuration. In a such case, unexpected vortex bundle jumps and a Meissner volume compression are clearly observed after the vortices enter the irradiated region.



قيم البحث

اقرأ أيضاً

78 - U. Welp 2002
Nb films containing extended arrays of holes with 45-nm diameter and 100-nm spacing have been fabricated using anodized aluminum oxide (AAO) as substrate. Pronounced matching effects in the magnetization and Little-Parks oscillations of the supercond ucting critical temperature have been observed in fields up to 9 kOe. Flux pinning in the patterned samples is enhanced by two orders of magnitude as compared to unpatterned reference samples in applied fields exceeding 5 kOe. Matching effects are a dominant contribution to vortex pinning at temperatures as low as 4.2 K due to the extremely small spacing of the holes.
The critical current (Jc) of highly twinned YBa2Cu3O7 films has been measured as a function of temperature, magnetic field and angle. For much of the parameter space we observe a strong suppression of Jc for fields in the twin boundary (TB) direction s; this is quantitatively modeled as flux-cutting-mediated vortex channeling. For certain temperatures and fields a cross-over occurs to a regime in which channeling is blocked and the TBs act as planar pinning centers so that TB pinning enhances the overall Jc. In this regime, intrinsic pinning along the TBs is comparable to that between the twins.
We present a study of the anisotropic vortex parameters as obtained from measurements of the microwave complex resistivity in the vortex state with a tilted applied magnetic field in YBa2Cu3O7-x thin films with BaZrO3 nanorods. We present the angular dependence of the vortex viscosity $eta$, the pinning constant k_p and the upper limit for the creep factor chi_M. We show that the directional effect of the nanorods is absent in eta, which is dictated by the mass anisotropy gamma. By contrast, pinning-mediated properties are strongly affected by the nanorods. It is significant that the pinning and creep affected by the nanorods is detectable also at our very high operating frequency, which implies very short-range displacements of the vortices from their equilibrium position.
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use t he time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers --- varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.
107 - J. Trastoy , V. Rouco , C. Ulysse 2013
We study the general problem of a manifold of interacting elastic lines whose spatial correlations are strongly affected by the competition between random and ordered pinning. This is done through magneto-transport experiments with YBa2Cu3O7-d thin f ilms that contain a periodic vortex pinning array created via masked ion irradiation, in addition to the native random pinning. The strong field-matching effects we observe suggest the prevalence of periodic pinning, and indicate that at the matching field each vortex line is bound to an artificial pinning site. However, the vortex-glass transition dimensionality, quasi-2D instead of the usual 3D, evidences reduced vortex-glass correlations along the vortex line. This is also supported by an unusual angular dependence of the magneto-resistance, which greatly differs from that of Bose-glass systems. A quantitative analysis of the angular magnetoresistance allows us to link this behaviour to the enhancement of the system anisotropy, a collateral effect of the ion irradiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا