ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of a Mixed Spin Channel Feshbach Resonance in Rubidium 87

46   0   0.0 ( 0 )
 نشر من قبل Dr. Kai Bongs
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of a mixed spin channel Feshbach resonance at the low magnetic field value of (9.09 +/- 0.01) G for a mixture of |2,-1> and |1,+1> states in 87Rb. This mixture is important for applications of multi-component BECs of 87Rb, e.g. in spin mixture physics and for quantum entanglement. Values for position, height and width of the resonance are reported and compared to a recent theoretical calculation of this resonance.



قيم البحث

اقرأ أيضاً

We investigate controlled phase separation of a binary Bose-Einstein condensate (BEC) in the proximity of mixed-spin-channel Feshbach resonance in the |F = 1, mF = +1> and |F = 2,mF = -1> states of 87Rb at a magnetic field of 9.10 G. Phase separation occurs on the lower magnetic-field side of the Feshbach resonance while the two components overlap on the higher magnetic-field side. The Feshbach resonance curve of the scattering length is obtained from the shape of the atomic cloud by comparison with the numerical analysis of coupled Gross-Pitaevskii equations.
147 - S. B. Papp , C. E. Wieman 2006
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a $^{87}$Rb BEC and a cold atomic gas of $^{85}$Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even tho ugh the $^{85}$Rb gas is non-degenerate we observe a large molecular conversion efficiency due to the presence of a quantum degenerate $^{87}$Rb gas; this represents a key feature of our system. We compare the molecule creation at two different Feshbach resonances with different magnetic-field widths. The two Feshbach resonances are located at $265.44pm0.15$ G and $372.4pm1.3$ G. We also directly measure the small binding energy of the molecules through resonant magnetic-field association.
112 - B. Deh , C. Marzok , C. Zimmermann 2007
We report on the observation of two Feshbach resonances in collisions between ultracold $^6$Li and $^{87}$Rb atoms in their respective hyperfine ground states $|F,m_F>=|1/2,1/2>$ and $|1,1>$. The resonances show up as trap losses for the $^6$Li cloud induced by inelastic Li-Rb-Rb three-body collisions. The magnetic field values where they occur represent important benchmarks for an accurate determination of the interspecies interaction potentials. A broad Feshbach resonance located at 1066.92 G opens interesting prospects for the creation of ultracold heteronuclear molecules. We furthermore observe a strong enhancement of the narrow p-wave Feshbach resonance in collisions of $^6$Li atoms at 158.55 G in the presence of a dense $^{87}$Rb cloud. The effect of the $^{87}$Rb cloud is to introduce Li-Li-Rb three-body collisions occurring at a higher rate than Li-Li-Li collisions.
152 - C. Marzok , B. Deh , C. Zimmermann 2008
We report on the observation of five Feshbach resonances in collisions between ultracold $^7$Li and $^{87}$Rb atoms in the absolute ground state mixture where both species are in their $|f,m_f>=|1,1>$ hyperfine states. The resonances appear as trap l osses for the $^7$Li cloud induced by inelastic heteronuclear three-body collisions. The magnetic field values where they occur are important quantities for an accurate determination of the interspecies interaction potentials. Results of coupled channels calculations based on the observed resonances are presented and refined potential parameters are given. A very broad Feshbach resonance centered around 649 G should allow for fine tuning of the interaction strength in future experiments.
126 - D.M. Bauer , M. Lettner , C. Vo 2009
The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additio nal flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا