ﻻ يوجد ملخص باللغة العربية
Time--delayed feedback is exploited for controlling noise--induced motion in coherence resonance oscillators. Namely, under the proper choice of time delay, one can either increase or decrease the regularity of motion. It is shown that in an excitable system, delayed feedback can stabilize the frequency of oscillations against variation of noise strength. Also, for fixed noise intensity, the phenomenon of entrainment of the basic oscillation period by the delayed feedback occurs. This allows one to steer the timescales of noise-induced motion by changing the time delay.
We investigate the possibility to suppress noise-induced intensity pulsations (relaxation oscillations) in semiconductor lasers by means of a time-delayed feedback control scheme. This idea is first studied in a generic normal form model, where we de
We consider motion of an underdamped Brownian particle in a washboard potential that is subjected to an unbiased time-periodic external field. While in the limiting deterministic system in dependence of the strength and phase of the external field di
We study the implementation of a weak multiple delayed feedback for controlling coherence of chaotic oscillations. The specific system we treat is the Lorenz system with classical set of parameters. There are two reasons behind the interest to feedba
We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of th
We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such system and analyze how the