ﻻ يوجد ملخص باللغة العربية
We present an all-electron study of the dynamical density-response function of hexagonal close-packed transition metals Sc and Ti. We elucidate various aspects of the interplay between the crystal structure and the electron dynamics by investigating the loss function, and the associated dielectric function, for wave-vector transfers perpendicular and parallel to the hexagonal plane. As expected, but contrary to recent work, we find that the free-electron-like aspects of the dynamical response are rather isotropic for small wave vectors. The crystal local-field effects are found to have an impact on the plasmon energy for small wave vectors, which gives rise to an interplay with the exchange-correlation effects built into the many-body kernel. The loss function lineshape shows a significant dependence on propagation direction; in particular, for propagation on the hexagonal plane the plasmon hybridizes substantially with fine structure due to d-electron transitions, and its dispersion curve becomes difficult to establish, beyond the small wave vector limit. The response is calculated in the framework of time-dependent density functional theory (TDDFT), based on a full-potential linearized augmented-plane-wave (LAPW) ground-state, in which the exchange-correlation effects are treated in the local-density approximation.
The optical response functions and band structures of LiCoO$_2$ are studied at different levels of approximation, from density functional theory (DFT) in the generalized gradient approximation (GGA) to quasiparticle self-consistent QS$GW$ (with $G$ f
Accurate low-order structure factors (Fg) measured by quantitative convergent beam electron diffraction (QCBED) were used for validation of different density functional theory (DFT) approximations. 23 low-order Fg were measured by QCBED for the trans
The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experime
The pressure induced bcc to hcp transition in Fe has been investigated via ab-initio electronic structure calculations. It is found by the disordered local moment (DLM) calculations that the temperature induced spin fluctuations result in the decreas
We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a latt